Monday, September 19, 2016

How to Clean Algae and Moss Off Asphalt Shingles

Stains on asphalt roofing shingles make a house look shabby, which detracts from its value. In some cases, stains are merely a cosmetic issue.  But sometimes they’re symptomatic of a problem that, if left unchecked, can lead to more serious damage and, eventually, roof failure. It's not always hard to distinguish the causes of stains, nor, in most cases, to get rid of them and prevent the stains from recurring.

Common Causes of Staining
Dark stains on an asphalt roof could be caused by a number of conditions, including:
Eroded mineral surface. If the roof-covering material has been on the house for 15 years or so, it could be that the surface granules are wearing off the shingles and the asphalt base is starting to show through. On older roofs, you may additionally see cracked and/or shingles with curled edges. If you determine that age and wear are the causes of darkening, it may be time for a new roof.
Algae growth. More often than not, blue, green or black stains on an asphalt-shingle roof are caused by algae. Algae staining begins with small spots which, over time, can develop into streaks. Algae stains, which are often mistaken for mold or mildew, aren't harmful to anything other than the appearance of asphalt shingles, but nobody likes the look.

Algae-stained asphalt-shingle roof (photo by author)

Moss. Green, velvety masses of moss often grow on north-facing roof surfaces and on tree-shaded roofs. Unlike algae, moss left on roof surfaces can develop beyond an aesthetic problem. It can infiltrate the roof structure underneath the shingles and make their edges lift and curl, which can lead to cracking and blow-off during high winds and storms. Heavy moss growth can actually form dams that can cause water to back up under the shingles and damage the roof deck. It's best to clean moss off a roof as soon as you notice it's growing there.

Safety First 
Both algae and moss can be easily removed from asphalt shingles with a 50/50 solution of chlorine bleach and water. Laundry-strength bleach is sufficient, or you can opt for any of a number of proprietary roof cleaners, some of which don't contain bleach, lye, or other potentially harmful chemicals.
Since bleach and some cleaners can be harmful to plants and humans, it's a good idea to take some precautions when working with them, including the following:
  • Wait for a calm, windless day to clean your roof.
  • Spray landscape plants near the house with water and cover them with tarps to protect them from chemical overspray and runoff.
  • Wear protective clothing, including long sleeves, pants and gloves, as well as goggles to protect your eyes, and shoes with high-traction soles.
Before climbing up to clean stains from your roof, be aware that about 30,000 people fall off ladders and roofs each year.  Consider using a safety harness, just as the pros are required to do, and follow the common-sense rules for properly positioning and using a ladder, which can be found in InterNACHI’s article on ladder safety.  Also, be sure to notify someone that you’ll be on your roof.  In case of an accident that incapacitates you, you’ll want someone to know where to look for you.

Upgear by Wenner Safety Harness (photo courtesy of The Home Depot)

How to Clean Algae and Moss from a Roof 
Apply the bleach solution with a garden sprayer. Let it stand on the surface for about 20 minutes, then rinse it off with spray from a garden hose. Don't let the bleach solution stand on the roof for more than 30 minutes or so without rinsing. And don't use a pressure washer, which can damage the shingles by removing their protective layer of asphalt granules.
If accumulations of algae or moss are heavy, at least some of it should wash off the roof surface right away with the stream from the hose. You can try brushing off algae and moss with a brush or broom with medium-stiff bristles, but don't scrub too hard. You don't want to separate the mineral granules from the shingles.
If chunks of algae or moss or heavy stains remain on the surface after rinsing, let the roof dry, then spray on the bleach solution again. Wait 30 minutes and rinse. Don't worry if some staining remains after the second rinse. It should wash off over time with exposure to rain and sunlight.
How to Prevent Algae and Moss Stains from Recurring 
Algae and moss tend to grow roof surfaces that are shaded and retain moisture. So, it’s a good idea to cut away tree branches that overhang the roof and block sunlight. Keep the roof surface clean by blowing off leaves and fallen branches during seasonal maintenance.


The red lines indicate where to install sacrificial metal strips 
to prevent algae and moss growth.

For long-term stain prevention, have zinc or copper strips installed under the cap shingles, leaving an inch or two of the surface exposed at roof peaks, along hips, and under the first course of shingles at the base of dormers. Copper and zinc are sacrificial metals that shed tiny bits of their surface with each rainfall. The metals coat the roof and inhibit organic growth for many years.
Following these maintenance tips can help homeowners enjoy an attractive roof.  They can also help extend the roof’s service life, which is important whether you plan to stay in your home or sell it in the future.
To have your roof inspected, visit us at www.vhillc.com

Source: https://www.nachi.org/home-depot-clean-algae-off-asphalt.htm

by Michael Chotiner of The Home Depot

Wednesday, September 7, 2016

Attached Garage Fire Containment


An attached garage is a garage that is physically attached to a house. Fires that begin in attached garages are more likely to spread to living areas than fires that originate in detached garages. For this reason, combined with the multitude of flammable materials commonly found in garages, attached garages should be adequately sealed from living areas. A properly sealed attached garage will ideally restrict the potential spread of fire long enough to allow the occupants time to escape the home or building.

Why are garages (both attached and detached) fire hazards?
  • Oil or gasoline can drip from cars. These fluids may collect unnoticed and eventually ignite.
  • Flammable liquids, such as gasoline, oil and paint, are commonly stored in garages. Some other examples are brake fluid, degreaser, motor oil, varnish, lighter fluid, and fluids containing solvents, such as paint thinner. These chemicals are flammable in their fluid form, and some may create explosive vapors.
  • Heaters and boilers, which are frequently installed in garages, create sparks that can ignite fumes or fluids. Car batteries, too, will spark under certain conditions.
  • Mechanical or electrical building projects are often undertaken in the garage. Fires can easily start while a careless occupant is welding near flammable materials. 
Doors
The 2006 edition of the International Residential Code (IRC) states the following concerning doors that separate garages from living areas:
R309.1 Opening Penetration
Openings from a private garage directly into a room used for sleeping purposes shall not be permitted. Other openings between the garage and the residence shall be equipped with solid wood doors not less than 1-3/8” (35 mm) in thickness, solid- or honeycomb-core steel doors not less than 1-3/8” (35 mm) thick, or 20-minute fire-rated doors.
In addition, InterNACHI inspectors can check for the following while inspecting doors that separate garages from living areas:
  • While not required by the IRC, it is helpful if there is at least one step leading up to the door from the garage. Gasoline fumes and other explosive gases are heavier than air, and they will accumulate at ground level. Their entry beneath a door will be slowed by an elevation increase.
  • Doors should have tight seals around their joints to prevent seepage of fumes into the living areas of the house. Carbon monoxide, with the same approximate density as air (and often warmer than surrounding air), will easily rise above the base of an elevated door and leak through unsealed joints.
  • Doors should be self-closing. Many homeowners find these doors inconvenient, but they are safer than doors that can be left ajar. While this requirement is no longer listed in the IRC, it is still a valuable recommendation.
  • If doors have windows, the glass should be fire-rated.
  • Pet doors should not be installed in fire-rated doors. Pet doors will violate the integrity of a fire barrier. 
Walls and Ceilings
The 2006 edition of the IRC states the following concerning garage walls and ceilings:
          R309.2 Separation Required
The garage shall be separated from the residence and its attic area by not less than 1/2-inch (12.7 mm) gypsum board applied to the garage side. Garages beneath habitable rooms shall be separated from all habitable rooms above by not less than 5/8-inch (15.9 mm) Type X gypsum board or equivalent. Where the separation is a floor-ceiling assembly, the structure supporting the separation shall also be protected by not less than 1/2-inch (12.7 mm) gypsum board or equivalent. Garages located less than 3 feet (914 mm) from a dwelling unit on the same lot shall be protected with not less than 1/2–inch (12.7 mm) gypsum board applied to the interior side of exterior walls that are within this area. Openings in these walls shall be regulated by Section 309.1. This provision does not apply to garage walls that are perpendicular to the adjacent dwelling unit wall.
In addition, inspectors can check for the following while inspecting walls and ceilings:
  • In garages that have access to the attic, a hatch cover made from an approved, fire-rated material should protect this access at all times. Missing or opened covers should be called out, as should covers made from flammable materials, such as thin plywood. Garage attic door must be constructed such that the 45-minute rating is maintained; any drywall edges on both the hatch and the surrounding area exposed to physical damage should be protected. The cover or door should be installed so that it is permanent (non-removable), with latching hardware to maintain it in a closed position. This could be accomplished by the use of spring-loaded hinges, a door closer, or hardware that will not allow it to be left in an open position when not in use. A single bolt-type or hook-and-eye hardware does not provide a positive closure, since these would allow the door to be left open. Likewise, drywall screws are fasteners--not hardware--so they cannot be used as the only means of keeping access doors closed.
  • The living space should be separated from the garage by a firewall that extends from the floor to the roof. If the ceiling material is fire-rated, the firewall can terminate at the ceiling.
  • Drywall joints shall be taped or sealed. Joints shall be fitted so that the gap is no more than 1/20-inch, with joints backed by either solid wood or another layer of drywall such that the joints are staggered. 
Ducts

The 2006 edition of the IRC states the following concerning ducts that penetrate garage walls and ceilings:
R309.1.1 Duct Penetration

Ducts in the garage and ducts penetrating the walls or ceilings separating the dwelling from the garage shall be constructed of a minimum No. 26-gauge (0.48 mm) steel sheet or other approved material, and shall have no openings in the garage.
Dryer exhaust ducts that penetrate garage walls are serious fire hazards. These ducts are generally made from plastic and will easily melt during a fire, creating a large breach in the firewall.

Floors

The 2006 edition of the IRC states the following concerning floors in garages:
          R309.3 Floor Surface
Garage floor surfaces shall be of approved, non-combustible material. The area of the floor used for parking of automobiles or other vehicles shall be sloped to facilitate the movement of liquids to a drain or toward the main vehicle entry doorway.
Inspectors should also check for the following:
  • A curb should be present along the perimeter of the garage floor. This curb should be designed to prevent fluids from entering the living areas of the house. Curbs are often useful barriers for melted snow carried into the garage by automobiles, but curbs can also keep chemical spills contained in the garage.
  • Water heaters should be elevated above the floor by at least 18 inches. A pilot light may ignite spilled fluid or floor-level flammable fumes if the water heater is placed at floor level.
Concerning items placed on the floor, inspectors should check for the following:
  • All flammable liquids should be stored in clearly labeled, self-closing containers, and in small amounts. They should be stored away from heaters, appliances, pilot lights, and other sources of heat and flame.
  • Propane tanks should never be stored indoors. If they catch fire, a serious explosion may result. Propane tanks are sturdy enough to be stored outdoors.
  • The floor should be clear of clutter. Loose papers, matches, oily rags, and other flammable items are dangerous if they are strewn about the garage floor.
General safety tips that inspectors can pass onto their clients:
  • Use light bulbs with the proper wattage.
  • Do not overload electrical outlets.
  • Tape down all cords and wires so that they are not twisted or accidentally yanked.
In summary, attached garages should be sealed off from the living space so that fire may be contained.

To have your home inspected by a Certified Master Inspector, please visit www.vhillc.com


Source: https://www.nachi.org/attached-garage-fire-hazards.htm by Nick Gromicko and Kenton Shepard

Tuesday, September 6, 2016

Anti-Tip Brackets

Anti-tip brackets are metal devices designed to prevent freestanding ranges from tipping. They are normally attached to a rear leg of the range or screwed into the wall behind the range, and are included in all installation kits. A unit that is not equipped with these devices may tip over if enough weight is applied to its open door, such as that from a large Thanksgiving turkey, or even a small child. A falling range can crush, scald, or burn anyone caught beneath.

Bracket Inspection
Inspectors and homeowners can confirm the presence of anti-tip brackets through the following methods:
  • It may be possible to see a wall-mounted bracket by looking over the rear of the range. Floor-mounted brackets are often hidden, although in some models with removable drawers, such as 30-inch electric ranges made by General Electric, the drawers can be removed and a flashlight can be used to search for the bracket. Be aware that a visual confirmation does not guarantee that the bracket has been properly installed. 
  • You can firmly grip the upper-rear section of the range and tip the unit. If equipped with an anti-tip bracket, the unit will not tip more than several inches before coming to a halt. The range should be turned off, and all items should be removed from the stovetop before this action can be performed. It is usually easier to detect a bracket by tipping the range than through a visual search. This test can be performed on all models and it can confirm the functionality of a bracket.
If no anti-tip bracket is detected, we always recommend that one be installed.
Clients can contact the dealer or builder who installed their range and request that they install a bracket. For clients who wish to install a bracket themselves, the part can be purchased at most hardware stores or ordered from a manufacturer. General Electric will send their customers an anti-tip bracket for free.
According to the U.S. Consumer Product Safety Commission (CPSC), there were 143 incidents caused by range tip-overs from 1980 to 2006. Of the 33 incidents that resulted in death, most of those victims were children. A small child may stand on an open range door in order to see what is cooking on the stovetop and accidentally cause the entire unit to fall on top of him, along with whatever hot items may have been cooking on the stovetop. The elderly, too, may be injured while using the range for support while cleaning. Also, you should never leave the oven door open while the oven is unattended. 
In response to this danger, the American National Standards Institute (ANSI) and Underwriters Laboratories (UL) created standards in 1991 that require all ranges manufactured after that year to be capable of remaining stable while supporting 250 pounds of weight on their open doors. Manufacturers' instructions, too, require that anti-tip brackets provided be installed. Despite these warnings, retailer Sears estimated in 1999 that a mere 5% of the gas and electric units they sold were ever equipped with anti-tip brackets. As a result of Sears’ failure to comply with safety regulations, they were sued and subsequently required to secure ranges in nearly 4 million homes, a measure that has been speculated to have cost Sears as much as $500 million.

My personal experience in well over a thousand home inspections tends to support the above data.  I normally see about 1 range per week with an anti-tip bracket installed, and those are generally new construction homes.  
In summary, ranges are susceptible to tipping if they are not equipped with anti-tip brackets. Now you should know how to confirm that these safety devices are present.

To have your home inspected, check out www.vhillc.com

Source: https://www.nachi.org/anti-tip.htm

Monday, September 5, 2016

Aluminum Wiring

Between approximately 1965 and 1973, single-strand aluminum wiring was sometimes substituted for copper branch-circuit wiring in residential electrical systemsAluminum and copper wiring, with each metal clearly identifiable by its color due to the sudden escalating price of copper. After a decade of use by homeowners and electricians, inherent weaknesses were discovered in the metal that lead to its disuse as a branch wiring material. Although properly maintained aluminum wiring is acceptable, aluminum will generally become defective faster than copper due to certain qualities inherent in the metal. Neglected connections in outlets, switches and light fixtures containing aluminum wiring become increasingly dangerous over time. Poor connections cause wiring to overheat, creating a potential fire hazard. In addition, the presence of single-strand aluminum wiring may void a home’s insurance policies. Inspectors may instruct their clients to talk with their insurance agents about whether the presence of aluminum wiring in their home is a problem that requires changes to their policy language.
Facts and Figures
  • On April, 28, 1974, two people were killed in a house fire in Hampton Bays, New York. Fire officials determined that the fire was caused by a faulty aluminum wire connection at an outlet.
  • According to the Consumer Product Safety Commission (CPSC), "Homes wired with aluminum wire manufactured before 1972 ['old technology' aluminum wire] are 55 times more likely to have one or more connections reach "Fire Hazard Conditions" than is a home wired with copper."
Aluminum as a Metal

Aluminum possesses certain qualities that, compared with copper, make it an undesirable material as an electrical conductor. These qualities all lead to loose connections, where fire hazards become likely. These qualities are as follows:
  • higher electrical resistance. Aluminum has a high resistance to electrical current flow, which means that, given the same amperage, aluminum conductors must be of a larger diameter than would be required by copper conductors.
  • less ductile. Aluminum will fatigue and break down more readily when subjected to bending and other forms of abuse than copper, which is more ductile. Fatigue will cause the wire to break down internally and will increasingly resist electrical current, leading to a buildup of excessive heat.
  • galvanic corrosion.  In the presence of moisture, aluminum will undergo galvanic corrosion when it comes into contact with certain dissimilar metals.
  • oxidation. Exposure to oxygen in the air causes deterioration to the outer surface of the wire. This process is called oxidation. Aluminum wire is more easily oxidized than copper wire, and the compound formed by this process – aluminum oxide – is less conductive than copper oxide. As time passes, oxidation can deteriorate connections and present a fire hazard.  
  • greater malleability. Aluminum is soft and malleable, meaning it is highly sensitive to compression. After a screw has been over-tightened on aluminum wiring, for instance, the wire will continue to deform or “flow” even after the tightening has ceased. This deformation will create a loose connection and increase electrical resistance in that location.
  • greater thermal expansion and contraction. Even more than copper, aluminum expands and contracts with changes in temperature. Over time, this process will cause connections between the wire and the device to degrade. For this reason, aluminum wires should never be inserted into the “stab,” “bayonet” or “push-in” type terminations found on the back of many light switches and outlets.
  • excessive vibration. Electrical current vibrates as it passes through wiring. This vibration is more extreme in aluminum than it is in copper, and, as time passes, it can cause connections to loosen.
Identifying Aluminum Wiring
  • Aluminum wires are the color of aluminum and are easily discernible from copper and other metals.
  • Since the early 1970s, wiring-device binding terminals for use with aluminum wire have been marked CO/ALR, which stands for “copper/aluminum revised."
  • Look for the word "aluminum" or the initials "AL" on the plastic wire jacket. Where wiring is visible, such as in the attic or electrical panel, inspectors can look for printed or embossed letters on the plastic wire jacket. Aluminum wire may have the word "aluminum," or a specific brand name, such as "Kaiser Aluminum," marked on the wire jacket. Where labels are hard to read, a light can be shined along the length of the wire.
  • When was the house built? Homes built or expanded between 1965 and 1973 are more likely to have aluminum wiring than houses built before or after those years.
Options for Correction
Aluminum wiring should be evaluated by a qualified electrician who is experienced in evaluating and correcting aluminum wiring problems. Not all licensed electricians are properly trained to deal with defective aluminum wiring. The CPSC recommends the following two methods for correction for aluminum wiring:
  • Rewire the home with copper wire. While this is the most effective method, rewiring is expensive and impractical, in most cases.
  • Use copalum crimps. The crimp connector repair consists of attaching a piece of copper wire to the existing aluminum wire branch circuit with a specially designed metal sleeve and powered crimping tool. This special connector can be properly installed only with the matching AMP tool. An insulating sleeve is placed around the crimp connector to complete the repair. Although effective, they are expensive (typically around $50 per outlet, switch or light fixture).
Although not recommended by the CPSC as methods of permanent repair for defective aluminum wiring, the following methods may be considered:
  • application of anti-oxidant paste. This method can be used for wires that are multi-stranded or wires that are too large to be effectively crimped.
  • pigtailing. This method involves attaching a short piece of copper wire to the aluminum wire with a twist-on connector. the copper wire is connected to the switch, wall outlet or other termination device. This method is only effective if the connections between the aluminum wires and the copper pigtails are extremely reliable. Pigtailing with some types of connectors, even though Underwriters Laboratories might presently list them for the application, can lead to increasing the hazard. Also, beware that pigtailing will increase the number of connections, all of which must be maintained. Aluminum Wiring Repair (AWR), Inc., of Aurora, Colorado, advises that pigtailing can be useful as a temporary repair or in isolated applications, such as the installation of a ceiling fan.
  • CO/ALR connections. According to the CPSC, these devices cannot be used for all parts of the wiring system, such as ceiling-mounted light fixtures or permanently wired appliances and, as such, CO/ALR connections cannot constitute a complete repair. Also, according to AWR, these connections often loosen over time.
  • alumiconn. Although AWR believes this method may be an effective temporary fix, they are wary that it has little history, and that they are larger than copper crimps and are often incorrectly applied. 
  • Replace certain failure-prone types of devices and connections with others that are more compatible with aluminum wire.
  • Remove the ignitable materials from the vicinity of the connections.

In summary, aluminum wiring can be a fire hazard due to inherent qualities of the metal. If we find this wiring during an inspection, we will definitely be recommending that you get an electrician in to either make sure it's safe, or more likely, to give you a quote for rewiring the house.
To have your San Antonio, TX area home inspected by a Certified Master Inspector, book online at www.vhillc.com or call 210-202-1974
Sourced from https://www.nachi.org/aluminum-wiring.htm

Sunday, September 4, 2016

Is That Bedroom Really a Bedroom?

Non-Conforming Bedrooms

by Nick Gromicko
A room must conform to specific requirements in order for it to be considered a bedroom or sleeping room. The reason for this law is that the inhabitant must be able to quickly escape in case of fire or another emergency.
Why would a homeowner use a non-conforming room as a bedroom?Non-conforming window  Some of the reasons include:
  • to earn money from it as a rental. While they run the risk of being discovered by the city, landlords will profit by renting out rooms that are not legally bedrooms;
  • to increase the value of the home. All other considerations being equal, a four-bedroom house will usually sell for more than a three-bedroom house; and
  • lack of knowledge of code requirements. To the untrained eye, there is little obvious difference between a conforming bedroom and non-conforming bedroom. When an emergency happens, however, the difference will be more apparent. If you have any questions about safety requirements, ask your InterNACHI inspector during your next scheduled inspection.
Homeowners run serious risks when they use a non-conforming room as a bedroom. An embittered tenant, for instance, may bring their landlord to court, especially if the tenant was forced out when the faux bedroom was exposed. The landlord, upon being exposed, might choose to adjust the bedroom to make it code-compliant, but this can cost thousands of dollars. Landlords can also be sued if they sell the home after having advertised it as having more bedrooms than it actually has. And the owner might pay more than they should be paying in property tax if they incorrectly list a non-conforming bedroom as a bedroom. Perhaps the greatest risk posed by rooms that unlawfully serve as bedrooms stems from the reason these laws exist in the first place:  rooms lacking egress can be deadly in case of an emergency. For instance, on January 5, 2002, four family members sleeping in the basement of a Gaithersburg, Maryland, townhome were killed by a blaze when they had no easy escape.
The following requirements are taken from the 2006 International Residential Code (IRC), and they can be used as a general guide, but bear in mind that the local municipality determines the legal definition of a bedroom. Such local regulations can vary widely among municipalities, and what qualifies as a bedroom in one city might be more properly called a den in a nearby city. In some municipalities, the room must be above grade, be equipped with an AFCI or smoke alarm to be considered a conforming bedroom, for instance. Ceiling height and natural lighting might also be factors. The issue can be extremely complex, so it’s best to learn the code requirements for your area. Nevertheless, the IRC can be useful, and it reads as follows:
  • EMERGENCY ESCAPE AND RESCUE REQUIRED SECTION: R 310.1 Basements and every sleeping room shall have at least one operable emergency and rescue opening. Such opening shall open directly into a public street, public alley, yard or court. Where basements contain one or more sleeping rooms, emergency egress and rescue openings shall be required in each sleeping room, but shall not be required in adjoining areas of the basement. Where emergency escape and rescue openings are provided, they shall have a sill height of not more than 44 inches (1,118mm) above the floor. Where a door opening having a threshold below the adjacent ground elevation serves as an emergency escape and rescue opening and is provided with a bulkhead enclosure, the bulkhead enclosure shall comply with SECTION R310.3. The net clear opening dimensions required by this section shall be obtained by the normal operation of the emergency escape and rescue opening from the inside. Emergency escape and rescue openings with a finished sill height below the adjacent ground elevation shall be provided with a window well, in accordance with SECTION R310.2.  
    • MINIMUM OPENING AREA: SECTION: R 310.1.1 All emergency escape and rescue openings shall have a minimum net clear opening of 5.7 square feet (0.530 m2). Exception: Grade floor openings shall have a minimum net clear opening of 5 square feet (0.465 m2).
    • MINIMUM OPENING HEIGHT: R 310.1.2 The minimum net clear opening height shall be 24 inches (610mm).
    • MINIMUM OPENING WIDTH: R 310.1.3 The minimum net clear opening width shall be 20 inches (508mm).
    • OPERATIONAL CONSTRAINTS: R 310.1.4 Emergency escape and rescue openings shall be operational from the inside of the room without the use of keys or tools or special knowledge.
  • WINDOW WELLS: SECTION: R310.2 The minimum horizontal area of the window well shall be 9 square feet (0.9 m2), with a minimum horizontal projection and width of 36 inches (914mm). The area of the window well shall allow the emergency escape and rescue opening to be fully opened. Exception: The ladder or steps required by SECTION R 310.2.1 shall be permitted to encroach a maximum of 6 inches (152mm) into the required dimensions of the window well. 
  • LADDER AND STEPS: SECTION: R 310.2.1 Window wells with a vertical depth greater than 44 inches (1,118mm) shall be equipped with a permanently affixed ladder or steps usable with the window in the fully open position. Ladders or steps required by this section shall not be required to comply with SECTIONS R311.5 and R311.6. Ladders or rungs shall have an inside width of at least 12 inches (305 mm), shall project at least 3 inches (76mm) from the wall, and shall be spaced not more than 18 inches (457mm) on-center vertically for the full height of the window well.
  • BULKHEAD ENCLOSURES: SECTION: R 310.3 Bulkhead enclosures shall provide direct access to the basement. The bulkhead enclosure with the door panels in the fully open position shall provide the minimum net clear opening required by SECTION R 310.1.1. Bulkhead enclosures shall also comply with SECTION R 311.5.8.2.
  • BARS, GRILLS, COVERS, AND SCREENS: SECTION: R 310.3 Bars, grilles, covers, screens or similar devices are permitted to be placed over emergency escape and rescue openings, bulkhead enclosures, or window wells that serve such openings, provided the minimum net clear opening size complies with SECTIONS R 310.1.1 to R 310.1.3, and such devices shall be releasable or removable from the inside without the use of a key, tool, special knowledge, or force greater than that which is required for normal operation of the escape and rescue opening.
  • EMERGENCY ESCAPE WINDOWS UNDER DECKS AND PORCHES: SECTION: R 310.5Emergency escape windows are allowed to be installed under decks and porches, provided the location of the deck allows the emergency escape window to be fully opened and provides a path not less than 36 inches (914 mm) in height to a yard or court.

In summary, non-conforming bedrooms are rooms that unlawfully serve as bedrooms, as the occupant would lack an easy escape in case of emergency.

For more information on getting a quality home inspection, please visit www.vhillc.com

Saturday, September 3, 2016

Moisture Intrusion: We Inspect For That

Moisture intrusion can be the cause of building defects, as well as health ailments for the building's occupants. Inspectors should have at least a basic understanding of how moisture may enter a building, and where problem areas commonly occur.

Some common moisture-related problems include:
  • structural wood decay; 
  • high indoor humidity and resulting condensation;
  • expansive soil, which may crack the foundation through changes in volume, or softened soil, which may lose its ability to support an overlying structure;
  • undermined foundations;
  • metal corrosion;
  • ice dams; and
  • mold growth.  Mold can only grow in the presence of high levels of moisture. People who suffer from the following conditions can be seriously (even fatally) harmed if exposed to elevated levels of airborne mold spores:
    • asthma;
    • allergies;
    • lung disease; and/or
    • compromised immune systems.
Note:  People who do not suffer from these ailments may still be harmed by elevated levels of airborne mold spores.
How does moisture get into the house?
Moisture or water vapor moves into a house in the following ways:
  • air infiltration. Air movement accounts for more than 98% of all water vapor movement in building cavities. Air naturally moves from high-pressure areas to lower ones by the easiest path possible, such as a hole or crack in the building envelope. Moisture transfer by air currents is very fast (in the range of several hundred cubic feet of air per minute). Replacement air will infiltrate through the building envelope unless unintended air paths are carefully and permanently sealed;
  • by diffusion through building material. Most building materials slow moisture diffusion, to a large degree, although they never stop it completely;
  • leaks from roof;
  • plumbing leaks; 
  • flooding, which can be caused by seepage from runoff or rising groundwater; it may be seasonal or catastrophic; and
  • human activities, including bathing, cooking, dishwashing and washing clothes. Indoor plants, too, may be a significant source of high levels of humidity.
Climate Zones
In the northern U.S., moisture vapor problems are driven primarily by high indoor relative humidity levels, combined with low outdoor temperatures during the winter. In the southern U.S. (especially the southeast), the problem is largely driven by high outdoor humidity and low indoor temperatures during summer months. Mixed climates are exposed to both conditions and can experience both types of problems. Humid climates, in general, will be more of a problem than dry climates. Wind-driven rain is the main cause of leaks through the building envelope.
Inspectors can check for moisture intrusion in the following areas:
Roofs
A roof leak may lead to the growth of visible mold colonies in the attic that can grow unnoticed. Roof penetrations increase the likelihood of water leaks due to failed gaskets, sealants and flashing. The number of roof penetrations may be reduced by a variety of technologies and strategies, including: 
  • consolidation of vent stacks below the roof;
  • exhaust fan caps routed through walls instead of the roof;
  • high-efficiency combustion appliances, which can be sidewall-vented;
  • electrically powered HVAC equipment and hot water heaters that do not require flue; and
  • adequate flashing. Oftentimes, inspectors discover missing, incorrectly installed or corroded flashing pipes.
Plumbing
  • Distribution pipes and plumbing fixtures can be the source of large amounts of moisture intrusion. If the wall is moist and/or discolored, then moisture damage is already in progress. Most plumbing is hidden in the walls, so serious problems can begin unnoticed.
  • One of the most important means of moisture management in the bathroom is the exhaust fan. A non-functioning exhaust fan overloads the bathroom with damp air. If the exhaust fan doesn’t turn on automatically when the bathroom is in use, consider recommending switching the wiring or switch. The lack of an exhaust fan should be called out in the inspection report. The fan should vent into the exterior, not into the attic.
  • The bathroom sink, in particular, is a common source of moisture intrusion and damage. Although overflow drains can prevent the spillage of water onto the floor, they can become corroded and allow water to enter the cabinet.  
  • Use a moisture meter to check for elevated moisture levels in the sub-floor around the toilet and tub.
  • Bathroom windows need to perform properly in a wide range of humidity and temperature conditions. Check to see if there are any obvious breaks in the weatherstripping and seals. Are there are stains or flaking on the painted surfaces?
  • Check showers and bathtubs. Is the caulking is cracked, stiff or loose in spots? Are there cracked tiles or missing grout that may channel water to vulnerable areas? If some water remains in the bathtub after draining, it may be a warning sign of possible structural weakening and settlement in the floor beneath the tub.
Utility Room
  • The water heater tank should be clean and rust-free.
  • The area around the water softener tank should be clean and dry.
  • Check that all through-the-wall penetrations for fuel lines, ducts, and electrical systems of heating system are well-sealed. All ducts should be clean and dust-free. Inspect the air supply registers in the house for dust accumulation.   
  • Filters, supply lines, exterior wall penetrations, vents, ductwork and drainage of the cooling system must all be in good working order to avoid moisture problems.  
Attic
  • Look for stains or discolorations at all roof penetrations. Chimneys, plumbing vents and skylight wells are common places where moisture may pass through the roof. Any such locations must be inspected for wetness, a musty smell and/or visible signs of mold.
  • Are there areas of the insulation that appear unusually thin?
  • Rust or corrosion around recessed lights are signs of a potential electrical hazard.
Foundations

Model building codes typically require damp-proofing of foundation walls. The damp-proofing shall be applied from the top of the footing to the finished grade. Parging of foundation walls should be damp-proofed in one of the following ways:
  • bituminous coating;
  • 3 pounds per square yard of acrylic modified cement;
  • 1/8-inch coat of surface-bonding cement; or
  • any material permitted for water-proofing.

In summary, moisture can enter a building in a number of different ways. High levels of moisture can cause building defects and health ailments. 

To schedule your home inspection including a detailed check for moisture intrusion, visit www.vhillc.com

by Nick Gromicko and Kenton Shepard

 https://www.nachi.org/moisture-intrusion.htm

Friday, September 2, 2016

What Really Matters in a Home Inspection

Buying a home?
The process can be stressful. A home inspection is supposed to give you peace of mind but, depending on the findings, it may have the opposite effect. You will be asked to absorb a lot of information over a short period of time.  Your inspection will entail a written report, including checklists and photos, and what the inspector tells you during the inspection. All of this combined with the seller's disclosure and what you notice yourself can make the experience overwhelming. What should you do?
Relax.
Home inspectors are professionals, and since I am a member of InterNACHI, then you can trust that I am among the most highly trained in the industry. Most of your inspection will be related to maintenance recommendations and minor imperfections. These are good to know about.
However, the issues that really matter will fall into four categories:
  1. major defects, such as a structural failure;
  2. conditions that can lead to major defects, such as a roof leak;
  3. issues that may hinder your ability to finance, legally occupy, or insure the home if not rectified immediately; and
  4. safety hazards, such as an exposed, live buss bar at the electrical panel.
Anything in these categories should be addressed as soon as possible. Often, a serious problem can be corrected inexpensively to protect both life and property (especially in categories 2 and 4).
Most sellers are honest and are often surprised to learn of defects uncovered during an inspection. It’s important to realize that a seller is under no obligation to repair everything mentioned in your inspection report. No house is perfect. Keep things in perspective.
And remember that homeownership is both a joyful experience and an important responsibility, so be sure to call on your InterNACHI Certified Master Inspector® to help you devise an annual maintenance plan that will keep your safe and your home in top condition for years to come. 

For more about the services offered by Veteran Home Inspections, PLLC, please visit www.vhillc.com

Adapted from https://www.nachi.org/matters.htm by Nick Gromicko