Showing posts with label Rental Property Inspection. Show all posts
Showing posts with label Rental Property Inspection. Show all posts

Monday, May 29, 2017

Carbon Monoxide Poisoning and Detectors

Carbon monoxide (CO) is a colorless, odorless, poisonous gas that forms from incomplete combustion of fuels, such as natural or liquefied petroleum gas, oil, wood or coal.
 
Facts and Figures
  • 480 U.S. residents died between 2001 and 2003 from non-fire-related carbon-monoxide poisoning.
  • Most CO exposures occur during the winter months, especially in December (including 56 deaths, and 2,157 non-fatal exposures), and in January (including 69 deaths and 2,511 non-fatal exposures). The peak time of day for CO exposure is between 6 and 10 p.m.
  • Many experts believe that CO poisoning statistics understate the problem. Because the symptoms of CO poisoning mimic a range of common health ailments, it is likely that a large number of mild to mid-level exposures are never identified, diagnosed, or accounted for in any way in carbon monoxide statistics.
  • Out of all reported non-fire carbon-monoxide incidents, 89% or almost nine out of 10 of them take place in a home.
Physiology of Carbon Monoxide Poisoning
When CO is inhaled, it displaces the oxygen that would ordinarily bind with hemoglobin, a process the effectively suffocates the body. CO can poison slowly over a period of several hours, even in low concentrations. Sensitive organs, such as the brain, heart and lungs, suffer the most from a lack of oxygen.
High concentrations of carbon monoxide can kill in less than five minutes. At low concentrations, it will require a longer period of time to affect the body. Exceeding the EPA concentration of 9 parts per million (ppm) for more than eight hours may have adverse health affects. The limit of CO exposure for healthy workers, as prescribed by the U.S. Occupational Health and Safety Administration, is 50 ppm.
 
Potential Sources of Carbon Monoxide

Any fuel-burning appliances which are malfunctioning or improperly installed can be a source of CO, such as:
  • furnaces;
  • stoves and ovens;
  • water heaters;Cars should never be left running in a garage
  • dryers; 
  • room and space heaters; 
  • fireplaces and wood stoves;
  • charcoal grills;
  • automobiles;
  • clogged chimneys or flues;
  • space heaters;
  • power tools that run on fuel;
  • gas and charcoal grills;
  • certain types of swimming pool heaters; and 
  • boat engines.
 
 
 
 
PPM
% CO 
in air
Health Effects in Healthy Adults
Source/Comments
0
0%
no effects; this is the normal level in a properly operating heating appliance

35
0.0035%
maximum allowable workplace exposure limit for an eight-hour work shift
The National Institute for Occupational Safety and Health (NIOSH)
50
0.005%
maximum allowable workplace exposure limit for an eight-hour work shift
              OSHA
100
0.01%
slight headache, fatigue, shortness of breath, 
errors in judgment

125
0.0125%

workplace alarm must sound (OSHA)
200
0.02%
headache, fatigue, 
nausea, dizziness

400
0.04%
severe headache, fatigue, nausea, dizziness, confusion; can be life-threatening after three hours of exposure
evacuate area immediately
800
0.08%
convulsions, loss of consciousness;
death within three hours
evacuate area immediately
12,000
1.2%
nearly instant death

 
 
CO Detector Placement

CO detectors can monitor exposure levels, but do not place them:
  • directly above or beside fuel-burning appliances, as appliances may emit a small amount of carbon monoxide upon start-up;
  • within 15 feet of heating and cooking appliances, or in or near very humid areas, such as bathrooms;
  • within 5 feet of kitchen stoves and ovens, or near areas locations where household chemicals and bleach are stored (store such chemicals away from bathrooms and kitchens, whenever possible);
  • in garages, kitchens, furnace rooms, or in any extremely dusty, dirty, humid, or greasy areas;
  • in direct sunlight, or in areas subjected to temperature extremes. These include unconditioned crawlspaces, unfinished attics, un-insulated or poorly insulated ceilings, and porches;
  • in turbulent air near ceiling fans, heat vents, air conditioners, fresh-air returns, or open windows. Blowing air may prevent carbon monoxide from reaching the CO sensors.
Do place CO detectors:
  • within 10 feet of each bedroom door and near all sleeping areas, where it can wake sleepers. The Consumer Product Safety Commission (CPSC) and Underwriters Laboratories (UL) recommend that every home have at least one carbon monoxide detector for each floor of the home, and within hearing range of each sleeping area;
  • on every floor of your home, including the basement (source:  International Association of Fire Chiefs/IAFC);
  • near or over any attached garage. Carbon monoxide detectors are affected by excessive humidity and by close proximity to gas stoves (source:  City of New York);
  • near, but not directly above, combustion appliances, such as furnaces, water heaters, and fireplaces, and in the garage (source:  UL); and
  • on the ceiling in the same room as permanently installed fuel-burning appliances, and centrally located on every habitable level, and in every HVAC zone of the building (source:  National Fire Protection Association 720). This rule applies to commercial buildings.
In North America, some national, state and local municipalities require installation of CO detectors in new and existing homes, as well as commercial businesses, among them:  Illinois, Massachusetts, Minnesota, New Jersey, Vermont and New York City, and the Canadian province of Ontario. Installers are encouraged to check with their local municipality to determine what specific requirements have been enacted in their jurisdiction.
How can I prevent CO poisoning?
  • Purchase and install carbon monoxide detectors with labels showing that they meet the requirements of the new UL standard 2034 or Comprehensive Safety Analysis 6.19 safety standards.
  • Make sure appliances are installed and operated according to the manufacturer's instructions and local building codes. Have the heating system professionally inspected by an InterNACHI inspector and serviced annually to ensure proper operation. The inspector should also check chimneys and flues for blockages, corrosion, partial and complete disconnections, and loose connections.
  • Never service fuel-burning appliances without the proper knowledge, skill and tools. Always refer to the owner's manual when performing minor adjustments and when servicing fuel-burning equipment.
  • Never operate a portable generator or any other gasoline engine-powered tool either in or near an enclosed space, such as a garage, house or other building. Even with open doors and windows, these spaces can trap CO and allow it to quickly build to lethal levels.
  • Never use portable fuel-burning camping equipment inside a home, garage, vehicle or tent unless it is specifically designed for use in an enclosed space and provides instructions for safe use in an enclosed area.
  • Never burn charcoal inside a home, garage, vehicle or tent.
  • Never leave a car running in an attached garage, even with the garage door open.
  • Never use gas appliances, such as ranges, ovens or clothes dryers to heat your home.
  • Never operate un-vented fuel-burning appliances in any room where people are sleeping.
  • During home renovations, ensure that appliance vents and chimneys are not blocked by tarps or debris. Make sure appliances are in proper working order when renovations are complete.
  • Do not place generators in the garage or close to the home. People lose power in their homes and get so excited about using their gas-powered generator that they don't pay attention to where it is placed. The owner's manual should explain how far the generator should be from the home.
  • Clean the chimney. Open the hatch at the bottom of the chimney to remove the ashes.  Hire a chimney sweep annually.
  • Check vents. Regularly inspect your home's external vents to ensure they are not obscured by debris, dirt or snow.
 

In summary, carbon monoxide is a dangerous poison that can be created by various household appliances. CO detectors must be placed strategically throughout the home or business in order to alert occupants of high levels of the gas.

To schedule your home inspection in San Antonio, TX, call 210-202-1974 or book online at www.vhillc.com

Sunday, May 28, 2017

Barbecue Safety

With tomorrow kicking off the summer, most of us will break out the BBQ sometime soon.  When you do, make sure you keep safety in mind.  And for tomorrow, take a moment to give thanks to the military men and women that gave their lives to allow us to live ours in freedom.
 
 
With barbecue season already here, homeowners should heed the following safety precautions in order to keep their families and property safe:

  • Propane grills present an enormous fire hazard, as the Consumer Product Safety Commission (CPSC) is aware of more than 500 fires that result annually from their misuse or malfunction. The following precautions are recommended specifically when using propane grills:
    • Store propane tanks outdoors and never near the grill or any other heat source. In addition, never store or transport them in your car’s trunk.
    • Make sure to completely turn off the gas after you have finished, or when you are changing the tank. Even a small gas leak can cause a deadly explosion. 
    • Check for damage to a tank before refilling it, and only buy propane from reputable suppliers.
    • Never use a propane barbecue grill on a terrace, balcony or roof, as this is dangerous and illegal.
    • No more than two 20-pound propane tanks are allowed on the property of a one- or two-family home.
    • To inspect for a leak, spray a soapy solution over the connections and watch for bubbles. If you see evidence of a leak, reconnect the components and try again. If bubbles persist, replace the leaking parts before using the grill.
    • Make sure connections are secure before turning on the gas, especially if the grill hasn’t been used in months. The most dangerous time to use a propane grill is at the beginning of the barbecue season.
    • Ignite a propane grill with the lid open, not closed. Propane can accumulate beneath a closed lid and explode.
    • When finished, turn off the gas first, and then the controls. This way, residual gas in the pipe will be used up.
  • Charcoal grills pose a serious poisoning threat due to the venting of carbon monoxide (CO). The CPSC estimates that 20 people die annually from accidentally ingesting CO from charcoal grills.  These grills can also be a potential fire hazard. Follow these precautions when using charcoal grills:
    • Never use a charcoal grill indoors, even if the area is ventilated. CO is colorless and odorless, and you will not know you are in danger until it is too late.
    • Use only barbecue starter fluid to start the grill, and don’t add the fluid to an open flame. It is possible for the flame to follow the fluid’s path back to the container as you're holding it.
    • Let the fluid soak into the coals for a minute before igniting them to allow explosive vapors to dissipate.
    • Charcoal grills are permitted on terraces and balconies only if there is at least 10 feet of clearance from the building, and a water source immediately nearby, such as a hose (or 4 gallons of water).
    • Be careful not to spill any fluid on yourself, and stand back when igniting the grill. Keep the charcoal lighter fluid container at a safe distance from the grill.
    • When cleaning the grill, dispose of the ashes in a metal container with a tight lid, and add water. Do not remove the ashes until they have fully cooled.
    • Fill the base of the grill with charcoal to a depth of no more than 2 inches.
  • Electric grills are probably safer than propane and charcoal grills, but safety precautions need to be used with them as well. Follow these tips when using electric grills:
    • Do not use lighter fluid or any other combustible materials. 
    • When using an extension cord, make sure it is rated for the amperage required by the grill. The cord should be unplugged when not in use, and out of a busy foot path to prevent tripping.
    • As always, follow the manufacturer's instructions.
Safety Recommendations for General Grill Use
  • Always make sure that the grill is used in a safe place, where kids and pets won't touch or bump into it. Keep in mind that the grill will still be hot after you finish cooking, and anyone coming into contact with it could be burned.
  • If you use a grill lighter, make sure you don't leave it lying around where children can reach it. They will quickly learn how to use it.
  • Never leave the grill unattended, as this is generally when accidents happen.
  • Keep a fire extinguisher or garden hose nearby.
  • Ensure that the grill is completely cooled before moving it or placing it back in storage.
  • Ensure that the grill is only used on a flat surface that cannot burn, and well away from any shed, trees or shrubs.
  • Clean out the grease and other debris in the grill periodically. Be sure to look for rust or other signs of deterioration.
  • Don't wear loose clothing that might catch fire while you're cooking.
  • Use long-handled barbecue tools and flame-resistant oven mitts.
  • Keep alcoholic beverages away from the grill; they are flammable!
In summary, homeowners should exercise caution when using any kind of grill, as they can harm life and property in numerous ways. 

Remember, you can schedule your home inspection by calling 210-202-1974 or book online at www.vhillc.com

Adapted with permission from https://www.nachi.org/barbeque-safety.htm by Nick Gromicko

Thursday, May 25, 2017

Air Sampling for Mold Inspections

Since we are now certified to do mold testing, here is a quick article on the benefits and issues with doing air samples for mold testing.  Veteran Home Inspections can provide you with air sampling, tape lift sampling, and a complete mold inspection, which helps identify the causes of indoor mold. 


Taking air samples during a mold inspection is important for several reasons.  Mold spores are not visible to the naked eye, and the types of mold present can often be determinair sampleed through laboratory analysis of the air samples.  Having samples analyzed can also help provide evidence of the scope and severity of a mold problem, as well as aid in assessing human exposure to mold spores.  After remediation, new samples are typically taken to help ensure that all mold has been successfully removed.
 
Air samples can be used to gather data about mold spores present in the interior of a house.  These samples are taken by using a pump that forces air through a collection device which catches mold spores.  The sample is then sent off to a laboratory to be analyzed.  InterNACHI inspectors who perform mold inspections often utilize air sampling to collect data, which has become commonplace.
Air-Sampling Devices
There are several types of devices used to collect air samples that can be analyzed for mold.  Some common examples include:
  • impaction samplers that use a calibrated air pump to impact spores onto a prepared microscope slide;
  • cassette samplers, which may be of the disposable or one-time-use type, and also employ forced air to impact spores onto a collection media; and
  • airborne-particle collectors that trap spores directly on a culture dish.  These may be utilized to identify the species of mold that has been found.
When and When Not to Sample
Samples are generally best taken if visual, non-invasive examination reveals apparent mold growth or conditions that could lead to growth, such as moisture intrusion or water damage.  Musty odors can also be a sign of mold growth.  If no sign of mold or potential for mold is apparent, one or two indoor air samples can still be taken, at the discretion of the inspector and client, in the most lived-in room of the house and at the HVAC unit.  
Outdoor air samples are also typically taken as a control for comparison to indoor samples.  Two samples -- one from the windward side and one from the leeward side of the house -- will help provide a more complete picture of what is in the air that may be entering the house through windows and doors at times when they are open.  It is best to take the outdoor samples as close together in time as possible to the indoor samples that they will be compared with.
InterNACHI inspectors should avoid taking samples if a resident of the house is under a physician’s care for mold exposure, if there is litigation in progress related to mold on the premises, or if the inspector’s health or safety could be compromised in obtaining the sample.  Residential home inspectors also should not take samples in a commercial or public building.
Where to Sample and Ideal Conditions
In any areas of a house suspected or confirmed to have mold growth, air samples can be taken to help verify and gather more information.  Moisture intrusion, water damage, musty odors, apparent mold growth, or conditions conducive to mold growth are all common reasons to gather an air sample.  Samples should be taken near the center of the room, with the collection device positioned 3 to 6 feet off the ground.
Ten minutes is an adequate amount of time for the air pump to run while taking samples, but this can be reduced to around five minutes if there is a concern that air movement from a lot of indoor activity could alter the results.  The sampling time can be reduced further if there is an active source of dust, such as from ongoing construction.
Sampling should take place in livable spaces within the house under closed conditions in order to help stabilize the air and allow for reproducibility of the sampling and measurement.  While the sample is being collected, windows and exterior doors should be kept shut other than for normal entry and exit from the home.  It is best to have air exchangers (other than a furnace) or fans that exchange indoor-outdoor air switched off during sampling.
Weather conditions can be an important factor in gathering accurate data. Severe thunderstorms or unusually high winds can affect the sampling and analysis results.  High winds or rapid changes in barometric pressure increase the difference in air pressure between the interior and exterior, which can increase the variability of airborne mold-spore concentration.  Large differences in air pressure between the interior and exterior can cause more airborne spores to be sucked inside, skewing the results of the sample. 
Difficulties and Practicality of Air Sampling
It is helpful to think of air sampling as just one tool in the tool belt when inspecting a house for mold problems.  An air sample alone is not enough to confirm or refute the existence of a problem, and such testing needs to be accompanied by visual inspection and other methods of data collection, such as a surface sample.  Indoor airborne spore levels can vary according to several factors, and this can lead to skewed results if care is not taken to set up the sampling correctly.  Also, since only spores are collected with an air sample and may actually be damaged during collection, identification of the mold type can be more difficult than with a sample collected with tape or a cultured sample.
Air samples are good for use as a background screen to ensure that there isn’t a large source of mold not yet found somewhere in a home.  This is because they can detect long chains of spores that are still intact.  These chains normally break apart quickly as they travel through the air, so a sample that reveals intact chains can indicate that there is mold nearby, possibly undiscovered during other tests and visual examination. 
In summary, when taken under controlled conditions and properly analyzed, air samples for mold are helpful in comparing relative particle levels between a problem and a control area.  They can also be crucial for comparing particle levels and air quality in an area before and after mold remediation.  

To schedule your complete mold inspection and testing appointment, call 210-202-1974 or visit www.vhillc.com.

by Nick Gromicko and Ethan Ward
used with permission from: https://www.nachi.org/air-sampling-mold-inspection.htm

Wednesday, October 19, 2016

Roofing

Roofs play a key role in protecting building occupants and interiors from outside weather conditions, primarily moisture. The roof, insulation and ventilation must all work together 

to keep the building free of moisture. Roofs also provide protection from the sun. In fact, if designed correctly, roof overhangs can protect the building's exterior walls from moisture and sun. The concerns regarding moisture, standing water, durability and appearance are different, reflected in the choices of roofing materials.
Maintaining Your Roof
  
Homeowner maintenance includes cleaning the leaves and debris from the roof’s valleys and gutters. Debris in the valleys can cause water to wick under the shingles and cause damage to the interior of the roof. Clogged rain gutters can cause water to flow back under the shingles on the eaves and cause damage, regardless of the roofing material. including composition shingle, wood shake, tile or metal. The best way to preserve your roof is to stay off it. Also, seasonal changes in the weather are usually the most destructive forces.
A leaky roof can damage ceilings, walls and furnishings. To protect buildings and their contents from water damage, roofers repair and install roofs made of tar or asphalt and gravel; rubber or thermoplastic; metal; or shingles made of asphalt, slate, fiberglass, wood, tile, or other material. Roofers also may waterproof foundation walls and floors.
There are two types of roofs:  flat and pitched (sloped). Most commercial, industrial and apartment buildings have flat or slightly sloping roofs. Most houses have pitched roofs. Some roofers work on both types; others specialize. Most flat roofs are covered with several layers of materials. Roofers first put a layer of insulation on the roof deck. Over the insulation, they then spread a coat of molten bitumen, a tar-like substance. Next, they install partially overlapping layers of roofing felt, a fabric saturated in bitumen, over the surface. Roofers use a mop to spread hot bitumen over the surface and under the next layer. This seals the seams and makes the surface watertight. Roofers repeat these steps to build up the desired number of layers, called plies. The top layer either is glazed to make a smooth finish or has gravel embedded in the hot bitumen to create a rough surface. An increasing number of flat roofs are covered with a single-ply membrane of waterproof rubber or thermoplastic compounds. Roofers roll these sheets over the roof’s insulation and seal the seams. Adhesive mechanical fasteners, or stone ballast hold the sheets in place. The building must be of sufficient strength to hold the ballast.
Most residential roofs are covered with shingles. To apply shingles, roofers first lay, cut, and tack 3-foot strips of roofing felt lengthwise over the entire roof. Then, starting from the bottom edge, they staple or nail overlapping rows of shingles to the roof. Workers measure and cut the felt and shingles to fit intersecting roof surfaces and to fit around vent pipes and chimneys. Wherever two roof surfaces intersect, or where shingles reach a vent pipe or chimney, roofers cement or nail flashing strips of metal or shingle over the joints to make them watertight. Finally, roofers cover exposed nailheads with roofing cement or caulking to prevent water leakage. Roofers who use tile, metal shingles or shakes follow a similar process. Some roofers also water-proof and damp-proof masonry and concrete walls and floors. To prepare surfaces for waterproofing, they hammer and chisel away rough spots, or remove them with a rubbing brick, before applying a coat of liquid waterproofing compound. They also may paint or spray surfaces with a waterproofing material, or attach a waterproofing membrane to surfaces. When damp-proofing, they usually spray a bitumen-based coating on interior or exterior surfaces.
A number of roofing materials are available...  
Asphalt

Asphalt is the most commonly used roofing material. Asphalt products include shingles, roll-roofing, built-up roofing, and modified bitumen membranes. Asphalt shingles are typically the most common and economical choice for residential roofing. They come in a variety of colors, shapes and textures. There are four different types: strip, laminated, interlocking, and large individual shingles. Laminated shingles consist of more than one layer of tabs to provide extra thickness. Interlocking shingles are used to provide greater wind resistance. And large individual shingles generally come in rectangular and hexagonal shapes. Roll-roofing products are generally used in residential applications, mostly for underlayments and flashings. They come in four different types of material: smooth-surfaced, saturated felt, specialty-eaves flashings, and mineral-surfaced. Only mineral-surfaced is used alone as a primary roof covering for small buildings, such as sheds. Smooth-surfaced products are used primarily as flashing to seal the roof at intersections and protrusions, and for providing extra deck protection at the roof's eaves and valleys. Saturated felt is used as an underlayment between the roof deck and the roofing material. Specialty-eaves flashings are typically used in climates where ice dams and water backups are common. Built-up roofing (or BUR) is the most popular choice of roofing used on commercial, industrial and institutional buildings. BUR is used on flat and low-sloped roofs and consists of multiple layers of bitumen and ply sheets. Components of a BUR system include the roof deck, a vapor retarder, insulation, membrane, and surfacing material. A modified bitumen-membrane assembly consists of continuous plies of saturated felts, coated felts, fabrics or mats between which alternate layers of bitumen are applied, either surfaced or unsurfaced. Factory surfacing, if applied, includes mineral granules, slag, aluminum or copper. The bitumen determines the membrane's physical characteristics and provides primary waterproofing protection, while the reinforcement adds strength, puncture-resistance and overall system integrity.
Metal

Most metal roofing products consist of steel or aluminum, although some consist of copper and other metals. Steel is invariably galvanized by the application of a zinc or a zinc-aluminum coating, which greatly reduces the rate of corrosion. Metal roofing is available as traditional seam and batten, tiles, shingles and shakes. Products also come in a variety of styles and colors. Metal roofs with solid sheathing control noise from rain, hail and bad weather just as well as any other roofing material. Metal roofing can also help eliminate ice damming at the eaves. And in wildfire-prone areas, metal roofing helps protect buildings from fire, should burning embers land on the roof. Metal roofing costs more than asphalt, but it typically lasts two to three times longer than asphalt and wood shingles.
Wood

Wood shakes offer a natural look with a lot of character. Because of variations in color, width, thickness, and cut of the wood, no two shake roofs will ever look the same. Wood offers some energy benefits, too. It helps to insulate the attic, and it allows the house to breathe, circulating air through the small openings under the felt rows on which wooden shingles are laid. A wood shake roof, however, demands proper maintenance and repair, or it will not last as long as other products. Mold, rot and insects can become a problem. The life-cycle cost of a shake roof may be high, and old shakes can't be recycled. Most wood shakes are unrated by fire safety codes. Many use wipe or spray-on fire retardants, which offer less protection and are only effective for a few years. Some pressure-treated shakes are impregnated with fire retardant and meet national fire safety standards. Installing wood shakes is more complicated than roofing with composite shingles, and the quality of the finished roof depends on the experience of the contractor, as well as the caliber of the shakes used. The best shakes come from the heartwood of large, old cedar trees, which are difficult to find. Some contractors maintain that shakes made from the outer wood of smaller cedars, the usual source today, are less uniform, more subject to twisting and warping, and don't last as long.

Concrete and Tile

Concrete tiles are made of extruded concrete that is colored. Traditional roofing tiles are made from clay. Concrete and clay tile roofing systems are durable, aesthetically appealing, and low in maintenance. They also provide energy savings and are environmentally friendly. Although material and installation costs are higher for concrete and clay tile roofs, when evaluated on a price-versus-performance basis, they may out-perform other roofing materials. Tile adorns the roofs of many historic buildings, as well as modern structures. In fact, because of its extreme durability, longevity and safety, roof tile is the most prevalent roofing material in the world. Tested over centuries, roof tile can successfully withstand the most extreme weather conditions including hail, high wind, earthquakes, scorching heat, and harsh freeze-thaw cycles. Concrete and clay roof tiles also have unconditional Class A fire ratings, which means that, when installed according to building code, roof tile is non-combustible and maintains that quality throughout its lifetime. In recent years, manufacturers have developed new water-shedding techniques and, for high-wind situations, new adhesives and mechanical fasteners. Because the ultimate longevity of a tile roof also depends on the quality of the sub-roof, roof tile manufacturers are also working to improve flashings and other aspects of the underlayment system. Under normal circumstances, properly installed tile roofs are virtually maintenance-free. Unlike other roofing materials, roof tiles actually become stronger over time. Because of roof tile's superior quality and minimal maintenance requirements, most roof tile manufacturers offer warranties that range from 50 years to the lifetime of the structure.
Concrete and clay tile roofing systems are also energy-efficient, helping to maintain livable interior temperatures (in both cold and warm climates) at a lower cost than other roofing systems. Because of the thermal capacity of roof tiles and the ventilated air space that their placement on the roof surface creates, a tile roof can lower air-conditioning costs in hotter climates, and produce more constant temperatures in colder regions, which reduces potential ice accumulation. Tile roofing systems are made from naturally occurring materials and can be easily recycled into new tiles or other useful products. They are produced without the use of chemical preservatives, and do not deplete limited natural resources.

Single-Ply

Single-ply membranes are flexible sheets of compounded synthetic materials that are manufactured in a factory. There are three types of membranes: thermosets, thermoplastics, and modified bitumens. These materials provide strength, flexibility, and long-lasting durability. The advantages of pre-fabricated sheets are the consistency of the product quality, the versatility in their attachment methods, and, therefore, their broader applicability. They are inherently flexible, used in a variety of attachment systems, and compounded for long-lasting durability and watertight integrity for years of roof life. Thermoset membranes are compounded from rubber polymers. The most commonly used polymer is EPDM (often referred to as "rubber roofing"). Thermoset membranes make successful roofing materials because they can withstand the potentially damaging effects of sunlight and most common chemicals generally found on roofs. The easiest way to identify a thermoset membrane is by its seams, which require the use of adhesive, either liquid or tape, to form a watertight seal at the overlaps. Thermoplastic membranes are based on plastic polymers. The most common thermoplastic is PVC (polyvinyl chloride) which has been made flexible through the inclusion of certain ingredients called plasticizers. Thermoplastic membranes are identified by seams that are formed using either heat or chemical welding. These seams are as strong or stronger than the membrane itself. Most thermoplastic membranes are manufactured to include a reinforcement layer, usually polyester or fiberglass, which provides increased strength and dimensional stability. Modified bitumen membranes are hybrids that incorporate the high-tech formulation and pre-fabrication advantages of single-ply with some of the traditional installation techniques used in built-up roofing. These materials are factory-fabricated layers of asphalt, "modified" using a rubber or plastic ingredient for increased flexibility, and combined with reinforcement for added strength and stability. There are two primary modifiers used today: APP (atactic polypropylene) and SBS (styrene butadiene styrene). The type of modifier used may determine the method of sheet installation. Some are mopped down using hot asphalt, and some use torches to melt the asphalt so that it flows onto the substrate. The seams are sealed by the same technique.

Are You at Risk?
If you aren't sure whether your house is at risk from natural disasters, check with your local fire marshal, building official, city engineer, or planning and zoning administrator. They can tell you whether you are in a hazard area. Also, they usually can tell you how to protect yourself and your house and property from damage. It is never a bad idea to ask an InterNACHI inspector whether your roof is in need of repair during your next scheduled inspection. Protection can involve a variety of changes to your house and property which that can vary in complexity and cost. You may be able to make some types of changes yourself. But complicated or large-scale changes and those that affect the structure of your house or its electrical wiring and plumbing should be carried out only by a professional contractor licensed to work in your state, county or city. One example is fire protection, accomplished by replacing flammable roofing materials with fire-resistant materials. This is something that most homeowners would probably hire a contractor to do.
  
Replacing Your Roof
  
The age of your roof is usually the major factor in determining when to replace it. Most roofs last many years, if properly installed, and often can be repaired rather than replaced. An isolated leak usually can be repaired. The average life expectancy of a typical residential roof is 15 to 20 years. Water damage to a home’s interior or overhangs is commonly caused by leaks from a single weathered portion of the roof, poorly installed flashing, or from around chimneys and skylights. These problems do not necessarily mean you need a new roof.
Fire-Resistant Materials
Some roofing materials, including asphalt shingles, and especially wood shakes, are less resistant to fire than others. When wildfires and brush fires spread to houses, it is often because burning branches, leaves, and other debris buoyed by the heated air and carried by the wind fall onto roofs. If the roof of your house is covered with wood or asphalt shingles, you should consider replacing them with fire-resistant materials. You can replace your existing roofing materials with slate, terra cotta or other types of tile, or standing-seam metal roofing. Replacing roofing materials is difficult and dangerous work. Unless you are skilled in roofing and have all the necessary tools and equipment, you will probably want to hire a roofing contractor to do the work. Also, a roofing contractor can advise you on the relative advantages and disadvantages of various fire-resistant roofing materials.
  
Hiring a Licensed Contractor
One of the best ways to select a roofing contractor is to ask friends and relatives for recommendations. You may also contact a professional roofers association for referrals. Professional associations have stringent guidelines for their members to follow. The roofers association in your area will provide you with a list of available contractors. Follow these guidlines when selecting a contractor:
  • get three references and review their past work;
  • get at least three bids; 
  • get a written contract, and don’t sign anything until you completely understand the terms; 
  • pay 10% down or $1,000 whichever is less; 
  • don’t let payments get ahead of the work; 
  • don’t pay cash; 
  • don’t make final payment until you’re satisfied with the job; and 
  • don’t rush into repairs or be pressured into making an immediate decision.
You’ve Chosen the Contractor... What About the Contract?
Make sure everything is in writing. The contract is one of the best ways to prevent problems before you begin. The contract protects you and the contractor by including everything you have both agreed upon. Get all promises in writing and spell out exactly what the contractor will and will not do.
...and Permits?
Your contract should call for all work to be performed in accordance with all applicable building codes. The building codes set minimum safety standards for construction. Generally, a building permit is required whenever structural work is involved. The contractor should obtain all necessary building permits. If this is not specified in the contract, you may be held legally responsible for failure to obtain the required permits. The building department will inspect your roof when the project has reached a certain stage, and again when the roof is completed.
...and Insurance?
Make sure the contractor carries workers' compensation insurance and general liability insurance in case of accidents on the job. Ask to have copies of these policies for your job file. You should protect yourself from mechanics’ liens against your home in the event the contractor does not pay subcontractors or material suppliers. You may be able to protect yourself by having a "release of lien" clause in your contract. A release of lien clause requires the contractor, subcontractors and suppliers to furnish a "certificate of waiver of lien." If you are financing your project, the bank or lending institution may require that the contractor, subcontractors and suppliers verify that they have been paid before releasing funds for subsequent phases of the project.
Keep these points in mind if you plan to have your existing roofing materials replaced:
  • Tile, metal, and slate are more expensive roofing materials, but if you need to replace your roofing anyway, it may be worthwhile to pay a little more for the added protection these materials provide. 
  • Slate and tile can be much heavier than asphalt shingles or wood shingles. If you are considering switching to one of these heavier coverings, your roofing contractor should determine whether the framing of your roof is strong enough to support them. 
  • If you live in an area where snow loads are a problem, consider switching to a modern standing-seam metal roof, which will usually shed snow efficiently.

For the best home inspection in the San Antonio, TX area, including the roof, contact Veteran Home Inspections.

Monday, October 17, 2016

Private Water Wells

If your family gets drinking water from a private well, do you know if your water is safe to drink? What health risks could you and your family face? Where can you go for help or advice? The EPA regulates public water systems; it does not have the authority to regulate private drinking water wells. Approximately 15% of Americans rely on their own private drinking water supplies, and these supplies are not subject to EPA standards, although some state and local governments do set rules to protect users of these wells. Unlike public drinking water 

systems serving many people, they do not have experts regularly checking the water’s source and its quality before it is sent to the tap. These households must take special precautions to ensure the protection and maintenance of their drinking water supplies.
Basic Information
There are three types of private drinking water wells: dug, driven, and drilled. Proper well construction and continued maintenance are keys to the safety of your water supply. Your state water-well contractor licensing agency, local health department, or local water system professional can provide information on well construction. The well should be located so rainwater flows away from it. Rainwater can pick up harmful bacteria and chemicals on the land’s surface. If this water pools near your well, it can seep into it, potentially causing health problems. Water-well drillers and pump-well installers are listed in your local phone directory. The contractor should be bonded and insured. Make certain your ground water contractor is registered or licensed in your state, if required. If your state does not have a licensing/registration program, contact the National Ground Water Association.

To keep your well safe, you must be sure that possible sources of contamination are not close by. Experts suggest the following distances as a minimum for protection — farther is better(see graphic on the right):
  • septic tanks:  50 feet;
  • livestock yards, silos, septic leach fields:  50 feet;
  • petroleum tanks, liquid-tight manure storage and fertilizer storage and handling:  100 feet; and 
  • manure stacks:  250 feet.
Many homeowners tend to forget the value of good maintenance until problems reach crisis-levels. That can be expensive. It’s better to maintain your well, find problems early, and correct them to protect your well’s performance. Keep up-to-date records of well installation and repairs, plus pumping and water tests. Such records can help spot changes and possible problems with your water system. If you have problems, ask a local expert to check your well construction and maintenance records. He or she can see if your system is okay or needs work.
Protect your own well area. Be careful about storage and disposal of household and lawn-care chemicals and wastes. Good farmers and gardeners minimize the use of fertilizers and pesticides. Take steps to reduce erosion and prevent surface water runoff. Regularly check underground storage tanks that hold home heating oil, diesel, or gasoline. Make sure your well is protected from the wastes of livestock, pets and wildlife.
Dug Wells
Dug wells are holes in the ground dug by shovel or backhoe. Historically, a dug well was excavated below the ground water table until incoming water exceeded the digger’s bailing rate. The well was then lined (cased) with stones, brick, tile, or other material to prevent collapse. It was covered with a cap of wood, stone or concrete. Since it is so difficult to dig beneath the ground water table, dug wells are not very deep. Typically, they are only 10 to 30 feet deep. Being so shallow, dug wells have the highest risk of becoming contaminated.To minimize the likelihood of contamination, your dug well should have certain features. These features help to prevent contaminants from traveling along the outside of the casing, or through the casing and into the well.
Dug Well Construction Features
  • The well should be cased with a watertight material (for example, tongue-and-groove pre-cast concrete), and a cement grout or bentonite clay sealant poured along the outside of the casing to the top of the well.
  • The well should be covered by a concrete curb and cap that stands about a foot above the ground.
  • The land surface around the well should be mounded so that surface water runs away from the well and is not allowed to pond around the outside of the wellhead.
  • Ideally, the pump for your well should be inside your home or in a separate pump house, rather than in a pit next to the well.
Land activities around a dug well can also contaminate it. While dug wells have been used as a household water supply source for many years, most are relics of older homes, dug before drilling equipment was readily available, or when drilling was considered too expensive. If you have a dug well on your property and are using it for drinking water, check to make sure it is properly covered and sealed. Another problem relating to the shallowness of a dug well is that it may go dry during a drought when the ground water table drops.
Driven Wells  
  
Like dug wells, driven wells pull water from the water-saturated zone above the bedrock. Driven wells can be deeper than dug wells. They are typically 30 to 50 feet deep and are usually located in areas with thick sand and gravel deposits where the ground water table is within 15 feet of the ground’s surface. In the proper geologic setting, driven wells can be easy and relatively inexpensive to install. Although deeper than dug wells, driven wells are still relatively shallow and have a moderate-to-high risk of contamination from nearby land activities.
Driven Well Construction Features
  • Assembled lengths of 2- to 3-inch diameter metal pipes are driven into the ground. A screened “well point” located at the end of the pipe helps drive the pipe through the sand and gravel. The screen allows water to enter the well and filters out sediment.
  • The pump for the well is in one of two places: on top of the well, or in the house. An access pit is usually dug around the well down to the frost line, and a water discharge pipe to the house is joined to the well pipe with a fitting.
  • The well and pit are capped with the same kind of large-diameter concrete tile used for a dug well. The access pit may be cased with pre-cast concrete.
To minimize this risk, the well cover should be a tight-fitting concrete curb and cap with no cracks, and should sit about a foot above the ground. Slope the ground away from the well so that surface water will not pond around the well. If there’s a pit above the well, either to hold the pump or to access the fitting, you may also be able to pour a grout sealant along the outside of the well pipe. Protecting the water quality requires that you maintain proper well construction and monitor your activities around the well. It is also important to follow the same land-use precautions around the driven well as described under dug wells.


Drilled Wells
Drilled wells penetrate about 100 to 400 feet into the bedrock. Where you find bedrock at the surface, it is commonly called ledge. To serve as a water supply, a drilled well must intersect bedrock fractures containing ground water.  
Drilled Well Construction Features
  • The casing is usually metal or plastic pipe, 6 inches in diameter, that extends into the bedrock to prevent shallow ground water from entering the well. By law, the casing has to extend at least 18 feet into the ground, with at least 5 feet extending into the bedrock. The casing should also extend a foot or two above the ground’s surface. A sealant, such as cement grout or bentonite clay, should be poured along the outside of the casing to the top of the well. The well should be capped to prevent surface water from entering the well.
  • Submersible pumps, located near the bottom of the well, are most commonly used in drilled wells. Wells with a shallow water table may feature a jet pump located inside the home. Pumps require special wiring and electrical service. Well pumps should be installed and serviced by a qualified professional registered with your state.
  • Most modern drilled wells incorporate a pitless adapter designed to provide a sanitary seal at the point where the discharge water line leaves the well to enter your home. The device attaches directly to the casing below the frost line, and provides a watertight sub-surface connection, protecting the well from frost and contamination.
  • Older drilled wells may lack some of these sanitary features. The well pipe used was often 8, 10 or 12 inches in diameter, and covered with a concrete well cap either at or below the ground’s surface. This outmoded type of construction does not provide the same degree of protection from surface contamination. Also, older wells may not have a pitless adapter to provide a seal at the point of discharge from the well.
Hydrofracting a Drilled Well
Hydrofracting is a process that applies water or air under pressure into your well to open up existing fractures near your well, and can even create new ones. Often, this can increase the yield of your well. This process can be applied to new wells with insufficient yield and to improve the quantity of older wells.
How can I test the quality of my private drinking water supply? 
Consider testing your well for pesticides, organic chemicals, and heavy metals before you use it for the first time. Test private water supplies annually for nitrate and coliform bacteria to detect contamination problems early. Test them more frequently if you suspect a problem. Be aware of activities in your watershed that may affect the water quality of your well, especially if you live in an unsewered area.
Human Health
The first step to protect your health and the health of your family is learning about what may pollute your source of drinking water. Potential contamination may occur naturally, or as a result of human activity.
What are some naturally occurring sources of pollution?
  • micro-organisms:  Bacteria, viruses, parasites and other microorganisms are sometimes found in water. Shallow wells — those with water close to ground level — are at most risk. Runoff, or water flowing over the land surface, may pick up these pollutants from wildlife and soils. This is often the case after flooding. Some of these organisms can cause a variety of illnesses. Symptoms include nausea and diarrhea. These can occur shortly after drinking contaminated water. The effects could be short-term yet severe (similar to food poisoning), or might recur frequently or develop slowly over a long time.
  • radionuclides: Radionuclides are radioactive elements, such as uranium and radium. They may be present in underlying rock and ground water.
  • radon: Radon is a gas that is a natural product of the breakdown of uranium in the soil and can also pose a threat. Radon is most dangerous when inhaled, and contributes to lung cancer. Although soil is the primary source, using household water containing radon contributes to elevated indoor radon levels. Radon is less dangerous when consumed in water, but remains a risk to health.
  • nitrates and nitrites: Although high nitrate levels are usually due to human activities (see below), they may be found naturally in ground water. They come from the breakdown of nitrogen compounds in the soil. Flowing ground water picks them up from the soil. Drinking large amounts of nitrates and nitrites is particularly threatening to infants (for example, when mixed in formula).
  • heavy metals: Underground rocks and soils may contain arsenic, cadmium, chromium, lead, and selenium. However, these contaminants are not often found in household wells at dangerous levels from natural sources.
  • fluoride: Fluoride is helpful in dental health, so many water systems add small amounts to drinking water. However, excessive consumption of naturally occurring fluoride can damage bone tissue. High levels of fluoride occur naturally in some areas. It may discolor teeth, but this is not a health risk.

What human activities can pollute ground water?

  • Septic tanks are designed to have a leach field around them, which is an area where wastewater flows out of the tank. This wastewater can also move into the ground water.
    bacteria and nitrates: These pollutants are found in human and animal wastes. Septic tanks can cause bacterial and nitrate pollution. So can large numbers of farm animals. Both septic systems and animal manure must be carefully managed to prevent pollution. Sanitary landfills and garbage dumps are also sources. Children and some adults are at higher risk when exposed to waterborne bacteria. These include the elderly and people whose immune systems are weak due to AIDS or treatments for cancer. Fertilizers can add to nitrate problems. Nitrates cause a health threat in very young infants called “blue baby syndrome." This condition disrupts oxygen flow in the blood. 
  • concentrated animal feeding operations (CAFOs): The number of CAFOs, often called “factory farms,” is growing. On these farms, thousands of animals are raised in a small space. The large amounts of animal waste/manure from these farms can threaten water supplies. Strict and careful manure management is needed to prevent pathogen and nutrient problems. Salts from high levels of manure can also pollute ground water. 
  • heavy metals: Activities such as mining and construction can release large amounts of heavy metals into nearby ground water sources. Some older fruit orchards may contain high levels of arsenic, once used as a pesticide. At high levels, these metals pose a health risk. 
  • fertilizers and pesticides: Farmers use fertilizers and pesticides to promote growth and reduce insect damage. These products are also used on golf courses and suburban lawns and gardens. The chemicals in these products may end up in ground water. Such pollution depends on the types and amounts of chemicals used and how they are applied. Local environmental conditions (soil types, seasonal snow and rainfall) also affect this pollution. Many fertilizers contain forms of nitrogen that can break down into harmful nitrates. This could add to other sources of nitrates mentioned above. Some underground agricultural drainage systems collect fertilizers and pesticides. This polluted water can pose problems to ground water and local streams and rivers. In addition, chemicals used to treat buildings and homes for termites and other pests may also pose a threat. Again, the possibility of problems depends on the amount and kind of chemicals. The types of soil and the amount of water moving through the soil also play a role. 
  • industrial products and waste: Many harmful chemicals are used widely in local business and industry. These can pollute drinking water if not well-managed. The most common sources of such problems are:
    • local businesses: These include nearby factories, industrial plants, and even small businesses such as gas stations and dry cleaners. All handle a variety of hazardous chemicals that need careful management. Spills and improper disposal of these chemicals and other industrial wastes can threaten ground water supplies.
    • leaking underground tanks and piping: Petroleum products, chemicals and waste stored in underground storage tanks and pipes may end up in the ground water. Tanks and piping leak if they are constructed or installed improperly. Steel tanks and piping corrode with age. Tanks are often found on farms. The possibility of leaking tanks is great on old, abandoned farm sites. Farm tanks are exempt from the EPA rules for petroleum and chemical tanks.
    • landfills and waste dumps: Modern landfills are designed to contain any leaking liquids. But floods can carry them over the barriers. Older dumpsites may have a wide variety of pollutants that can seep into ground water.
  • household waste: Improper disposal of many common products can pollute ground water. These include cleaning solvents, used motor oil, paints, and paint thinners. Even soaps and detergents can harm drinking water. These are often a problem from faulty septic tanks and septic leaching fields. 
  • lead and copper: Household plumbing materials are the most common source of lead and copper found in home drinking water. Corrosive water may cause metals in pipes or soldered joints to leach into your tap water. Your water’s acidity or alkalinity (often measured as pH) greatly affects corrosion. Temperature and mineral content also affect how corrosive it is. They are often used in pipes, solder and plumbing fixtures. Lead can cause serious damage to the brain, kidneys, nervous system, and red blood cells. The age of plumbing materials — in particular, copper pipes soldered with lead — is also important. Even in relatively low amounts, these metals can be harmful. The EPA rules under the Safe Drinking Water Act limit lead in drinking water to 15 parts per billion. Since 1988, the Act allows only lead-free pipe, solder and flux in drinking water systems. The law covers both new installations and repairs of plumbing.
 What You Can Do...

Private, individual wells are the responsibility of the homeowner. To help protect your well, here are some steps you can take:
Have your water tested periodically. It is recommended that water be tested every year for total coliform bacteria, nitrates, total dissolved solids, and pH levels. If you suspect other contaminants, test for those. Always use a state-certified laboratory that conducts drinking water tests. Since these can be expensive, spend some time identifying potential problems. Consult your InterNACHI inspector for information about how to go about water testing.
Testing more than once a year may be warranted in special situations if:
  • someone in your household is pregnant or nursing;
  • there are unexplained illnesses in the family;
  • your neighbors find a dangerous contaminant in their water;
  • you note a change in your water's taste, odor, color or clarity;
  • there is a spill of chemicals or fuels into or near your well; or 
  • you replace or repair any part of your well system.

Identify potential problems as the first step to safe-guarding your drinking water. The best way to start is to consult a local expert -- someone who knows your area, such as the local health department, agricultural extension agent, a nearby public water system, or a geologist at a local university.


Be aware of your surroundings. As you drive around your community, take note of new construction. Check the local newspaper for articles about new construction in your area.
Check the paper or call your local planning and zoning commission for announcements about hearings or zoning appeals on development or industrial projects that could possibly affect your water.


Attend these hearings, ask questions about how your water source is being protected, and don't be satisfied with general answers.  Ask questions, such as:  "If you build this landfill, what will you do to ensure that my water will be protected?" See how quickly they answer and provide specifics about what plans have been made to specifically address that issue.

Identify Potential Problem Sources

To start your search for potential problems, begin close to home. Do a survey around your well to discover:
  • Is there livestock nearby?
  • Are pesticides being used on nearby agricultural crops or nurseries?
  • Do you use lawn fertilizers near the well?
  • Is your well downstream from your own or a neighbor's septic system?
  • Is your well located near a road that is frequently salted or sprayed with de-icers during winter months?
  • Do you or your neighbors dispose of household waste or used motor oil in the backyard, even in small amounts?
If any of these items apply, it may be best to have your water tested and talk to your local public health department or agricultural extension agent to find ways to change some of the practices which can affect your private well.
In addition to the immediate area around your well, you should be aware of other possible sources of contamination that may already be part of your community or may be moving into your area. Attend any local planning or appeals hearings to find out more about the construction of facilities that may pollute your drinking water. Ask to see the environmental impact statement on the project. See if the issue of underground drinking water sources has been addressed. If not, ask why.

Common Sources of Ground Water Contamination

Category       Contaminant Source
Agricultural
  • animal burial areas
  • drainage fields/wells
  • animal feedlots
  • irrigation sites
  • fertilizer storage/use
  • manure spreading areas/pits, lagoons
  • pesticide storage/use
Commercial
  • airports
  • jewelry/metal plating
  • auto repair shops
  • laundromats
  • boat yards
  • medical institutions
  • car washes
  • paint shops
  • construction areas
  • photography establishments
  • cemeteries
  • process waste-water drainage
  • dry cleaners fields/wells
  • gas stations
  • railroad tracks and yards
  • golf courses
  • research laboratories
  • scrap and junkyards
  • storage tanks
Industrial
  • asphalt plants
  • petroleum production/storage
  • chemical manufacture/storage
  • pipelines
  • electronic manufacture
  • process waste-water drainage
  • electroplaters fields/wells
  • foundries/metal fabricators
  • septage lagoons and sludge
  • machine/metalworking shops
  • storage tanks
  • mining and mine drainage
  • toxic and hazardous spills
  • wood-preserving facilities
Residential
  • fuel oil
  • septic systems, cesspools
  • furniture stripping/refinishing
  • sewer lines
  • household hazardous products
  • swimming pools (chemicals)
  • household lawns
Other
  • hazardous waste landfills
  • recycling/reduction facilities
  • municipal incinerators
  • road de-icing operations
  • municipal landfills
  • road maintenance depots
  • municipal sewer lines
  • Storm water drains/basins/wells
  • open burning sites
  • transfer stations

To have your San Antonio, TX area well water checked, contact us at www.vhillc.com