Tuesday, September 26, 2017

FREE Real Estate Agent Online Continuing Education

     Attention Texas Real Estate Agents!  Like you, I understand the chore of having to do continuing education.  What's even worse is having to pay someone else to take these courses just to maintain your license.  Because of this, I'm happy to be able to offer you a free course for 2 approved CE credits.  This course, Home Energy Score for Real Estate Professionals, is a great course that will teach you about the Home Energy Score program, and how you can use it to help your clients.

     To access the course, go to www.nachi.org/agentce and select Texas.  When it asks you for the ID of the NACHI inspector that referred you, enter NACHI14020415.  

     Once you've learned about the Home Energy Score program, contact Veteran Home Inspections to get your clients their score.  Not only can it help them save money on energy costs, it can help them get stretch FHA debt-to-income limits or get a larger Fannie Mae HomeStyle Energy loan!  

Friday, September 22, 2017

Lead Paint Hazards and Testing

Are you buying a home built before 1978?  Maybe you live in one currently.  If so, please read on.

Lead was a common additive to paint up until it was banned from use in residential housing.  As a paint additive, it worked great.  Unfortunately, the health effects were ignored, so there is a lot of it still in housing today.  There are a lot of rumors going around about lead paint, so this post will address several of them and also provide you with information on what to do next.

Rumor 1: "My kids don't eat paint chips!"  Paint Chips are only one source of lead poisoning.  The most common source is actually dust from lead paint.  Some of us older folks remember "self-cleaning paint."  This was nothing more than the lead in paint seeping out, and chalking on the surface.  After it rained, the dirt (and lead) would be washed off and the paint would look great.  The same dust is created by all lead paints, and the lead dust accumulates in your house.  The most common surfaces are the floor, window sills, and window wells.  Young kids, especially those crawling or playing on the floor a lot, pick up the dust on their clothes, hands, pacifiers, toys, etc. and put them in their mouths.  As for the paint chips, they are still a hazard.  One of the properties of lead is that it has a sweet taste.  This encourages kids to eat it.

Rumor 2: "If it's been painted over, it's not a risk"  Painting over lead paint is not an accepted method of remediation.  It may help mitigate, but it doesn't eliminate the risk of lead poisoning.  Additionally, the biggest sources of lead dust (window tracks, door jambs, painted floors, and other friction surfaces) can quickly wear down exposing the lead paint again).

Rumor 3: "It only affects kids."  While children under 6 years old are at the greatest risk to lead poisoning, lead will affect all ages.  In adults, lead can cause cardiovascular, neurological, kidney, and reproductive issues.  Lead can also pass from mother to child while pregnant and through breast milk.

Rumor 4: "They pretty much stopped using it around 1950."  I have personally inspected homes built in 1977 that had lead paint in them, some of them massive amounts.  On the flip side, I have inspected homes built in the early 1900's that had no lead paint at all.  Bottom line, the only way to know is to do a full surface-by-surface inspection to see if there is lead paint in the house.  For a report on the prevalence of lead in housing, click here.

Rumor 5: "I'll just use the test kits I can buy at the hardware store"  These tests are not 100%, and they have a standard set at 1.0mg/cm2 (small concentrations are ignored).  Additionally, proper use requires damaging the paint to ensure all layers are tested.The price of these swabs run about $5 each, and you need a new swab for each location.  In a typical 1500 square foot house, a lead inspector will test over 100 locations.

I'm sure by now you realized that not only is lead a hazard to your entire family, but there has to be an easy way to find out your risk.

We are Texas certified lead risk assessors and inspectors.  We can easily check your house for lead paint and help you determine the risk that it has on your family.  We'll also help you build an action plan to mitigate that risk. We use a combination of methods to find and assess lead paint, including an XRF machine that conducts instant non-destructive testing of painted surfaces.  The great thing is that it can see through all the layers of the paint, so even if there was only one layer of lead-based paint covered by several layers of non-lead-based paint, we will know.  Because it's fast and non-destructive, we can test all the painted surfaces in your home in a reasonable amount of time.  An average house of 1500 square feet takes about 60-90 minutes to test.  We can also do this inspection at the same time we do your home inspection.  If we do find lead paint, we can take dust wipe samples to determine if there is lead dust present and the concentrations.  These wipes have to be sent to a lab for analysis, but the turnaround time fairly quick.  Armed with this information, you can make an educated decision on how best to manage the risk to your family.

If you own rental properties that were built before 1978, you should also get them tested for lead paint.  This can help manage your risk as a landlord.

If your child has been found to have an elevated blood level, we can also perform EBL Investigations to help you find the source of the lead poisoning.  Hopefully your local health department will provide this, but if not, we are available to assist.

Are you doing renovations on a home built prior to 1978?  Make sure you know if and where there is lead paint.  We can do an inspection of the area to be renovated to let you know if you need to take lead paint RRP precautions.

What are the different types of inspections:

A Lead Inspection is an inspection to determine and report the presence of lead-based paint.

If lead paint is found, you should do a full Risk Assessment, which determines the existence, nature, severity, and location of lead-based paint hazards.

If you are buying a pre-1978 house, you have the right to conduct a lead paint inspection.  Don't waive this right in your contract, and have the house inspected.

To schedule a lead paint inspection or full risk assessment, contact Veteran Home Inspections at 210-202-1974 or schedule online at www.vhillc.com.  Based in Bandera, TX, we cover the San Antonio, TX and Hill Country area.


Thursday, August 31, 2017

Flood-Damaged Homes & Buildings


by Nick Gromicko & Mike Marlow
 
Home and business owners should be prepared to protect themselves and their family members from the unique challenges posed by flood-damaged buildings. 
 
Hazards in and around flood-damaged buildings include the risks of:Good boots can protect against sharp debris in flood-damaged buildings
  • growth of large mold colonies;
  • septic system collapse;
  • trip-and-fall injuries;
  • structural collapse; 
  • fire and explosions; 
  • toxic sludge and materials containing waterborne bacteria; and 
  • electrical shock hazards.
Inspection Tips
  • Inspect the building exterior for downed power lines and gas leaks. Gas leaks will smell like rotten eggs. If you suspect a gas leak, contact the utility company immediately.
  • While entering the building, see if the door sticks at the top. If it does, this could mean that the ceiling is ready to collapse. After you open the door, stand outside the doorway, clear of any falling debris.        
  • Wear sturdy, treaded boots. According to the American Red Cross, the most common injury following a disaster is cut feet. Broken bottles, nails, glass, and other dangerous debris may litter the floor, and stairs may be very slippery.
  • Once you are inside the home, check for gas leaks again. If you smell gas or hear a blowing or hissing noise, open a window and quickly leave the building. Turn off the gas at the outside main valve, if you can, and call the gas company from a neighbor's home. If you turn off the gas for any reason, a professional must turn it back on. Never use an open flame inside of a flood-damaged house unless you know that the gas has been turned off and the house is ventilated. To inspect for damage, use a battery-powered lantern or flashlight, and not an open flame or electrical fixture in the house.
  • Do not use appliances that may have gotten wet unless you know they have been dismantled, cleaned and dried.
  • Do not work by yourself. If you are injured, it might take a long time before you receive assistance. If you must work alone, bring a cell phone or radio so you may call for assistance, if the need arises.
  • Bring a HEPA-rated respirator to use in case you detect extensive mold. If you are asthmatic or otherwise at heightened risk to mold exposure, leave the Large mold colonies have grown in this house, which was flooded when a water pipe burst building. Other personal safety equipment, such as gloves and coveralls, may also prevent contact with mold and other contaminants.
  • Examine doors, walls, windows, floors and staircases to make sure that the building shows no signs of potential collapse. Inspect for loose plaster, drywall, and ceilings that may fall. Also, inspect the foundation for evidence of cracks and other structural damage that may render the building uninhabitable.
  • Inspect for fire hazards, such as broken and leaking gas lines, flooded electrical circuits, and submerged furnaces and electrical appliances. Flammable and explosive materials may travel from upstream. Be aware that fire is the most frequent hazard in homes following floods.
  • Inspect for electrical system damage, such as broken and frayed wires, and burned insulation. You can turn off the electricity at the main fuse box or circuit breaker. If you have to step in water to get to the fuse box or circuit breaker, call an electrician first for advice. Electrical equipment should be inspected by a qualified professional and dried before being returned to service.  Salt water and brackish water can cause even more damage very quickly.
  • Inspect for sewage and water supply-line damage. If you suspect sewage lines have been damaged, avoid using the toilets and call a plumber. If water pipes are damaged, contact the water utility company and avoid operating the tap.
  • Use caution while inspecting crawlspaces for a variety of reasons, such as the presence of mold, sewage, asbestos, chemicals, rodents, and the risk of structural collapse.
  • Watch out for animals, especially poisonous snakes, which may have been washed into the building during the flood. You can use a stick to poke through debris to check for dangerous critters.
  • Food that has come into contact with floodwater may be contaminated and it must be thrown away.  Canned food may be salvageable if the can is not dented or damaged.
  • Sterilize water if it is of questionable purity. One easy way to do this is to boil it for at least five minutes. Water wells that may have been affected by floodwater should be pumped out and the water tested for purity before drinking.
  • Have exposed wires replaced by a qualified professional.
  • As much as possible, remove the mud and silt that has entered the home, both by shoveling and hosing the house down. Mud and silt contain sewage and chemicals from farms, factories, roads and buildings. Discard items, such as mattresses and wallboard, that may be contaminated by mud or silt.
  • Turn off the house’s electricity. Do this even if the power company has turned off electricity to the area.
  • Take pictures of the building and its contents for insurance purposes.
We here at Veteran Home Inspections wish everyone in the areas affected by Hurricane Harvey the best.  Take care and be safe.

Mike & Jamie Marlow
Veteran Home Inspections, PLLC
210-202-1974

Wednesday, August 23, 2017

Protect Your Property From Water Damage

With the predicted rainfalls coming from the hurricane headed towards the Texas coast, now is a good time to take a look around your property to see where your vulnerabilities to water are.  A little maintenance and repair now can keep you dry and keep your home or business safe.

Water may be essential to life, but, as a destructive force, water can diminish the value of your home or building. Homes as well as commercial buildings can suffer water damage that results in increased maintenance costs, a decrease in the value of the property, lowered productivity, and potential liability associated with a decline in indoor air quality. The best way to protect against this potential loss is to ensure that the building components which enclose the structure, known as the building envelope, are water-resistant. Also, you will want to ensure that manufacturing processes, if present, do not allow excess water to accumulate. Finally, make sure that the plumbing and ventilation systems, which can be quite complicated in buildings, operate efficiently and are well-maintained. This article provides some basic steps for identifying and eliminating potentially damaging excess moisture.

Identify and Repair All Leaks and Cracks
The following are common building-related sources of water intrusion:
  • windows and doors: Check for leaks around your windows, storefront systems and doors.
  • roof: Improper drainage systems and roof sloping reduce roof life and become a primary source of moisture intrusion. Leaks are also common around vents for exhaust or plumbing, rooftop air-conditioning units, or other specialized equipment.
  • foundation and exterior walls: Seal any cracks and holes in exterior walls, joints and foundations. These often develop as a naturally occurring byproduct of differential soil settlement.
  • plumbing: Check for leaking plumbing fixtures, dripping pipes (including fire sprinkler systems), clogged drains (both interior and exterior), defective water drainage systems and damaged manufacturing equipment.
  • ventilation, heating and air conditioning (HVAC) systems: Numerous types, some very sophisticated, are a crucial component to maintaining a healthy, comfortable work environment. They are comprised of a number of components (including chilled water piping and condensation drains) that can directly contribute to excessive moisture in the work environment. In addition, in humid climates, one of the functions of the system is to reduce the ambient air moisture level (relative humidity) throughout the building. An improperly operating HVAC system will not perform this function.
Prevent Water Intrusion Through Good Inspection and Maintenance Programs
Hire a qualified InterNACHI inspector to perform an inspection of the following elements of your building to ensure that they remain in good condition:
  • flashings and sealants: Flashing, which is typically a thin metal strip found around doors, windows and roofs, are designed to prevent water intrusion in spaces where two building materials come together. Sealants and caulking are specifically applied to prevent moisture intrusion at building joints. Both must be maintained and in good condition.
  • vents: All vents should have appropriate hoods, exhaust to the exterior, and be in good working order.
  • Review the use of manufacturing equipment that may include water for processing or cooling. Ensure wastewater drains adequately away, with no spillage. Check for condensation around hot or cold materials or heat-transfer equipment.
  • HVAC systems are much more complicated in commercial buildings. Check for leakage in supply and return water lines, pumps, air handlers and other components. Drain lines should be clean and clear of obstructions. Ductwork should be insulated to prevent condensation on exterior surfaces.
  • humidity: Except in specialized facilities, the relative humidity in your building should be between 30% and 50%. Condensation on windows, wet stains on walls and ceilings, and musty smells are signs that relative humidity may be high. If you are concerned about the humidity level in your building, consult with a mechanical engineer, contractor or air-conditioning repair company to determine if your HVAC system is properly sized and in good working order. A mechanical engineer should be consulted when renovations to interior spaces take place.
  • moist areas: Regularly clean off, then dry all surfaces where moisture frequently collects.
  • expansion joints: Expansion joints are materials between bricks, pipes and other building materials that absorb movement. If expansion joints are not in good condition, water intrusion can occur.
Protection From Water Damage
  • interior finish materials: Replace drywall, plaster, carpet and stained or water-damaged ceiling tiles. These are not only good evidence of a moisture intrusion problem, but can lead to deterioration of the work environment, if they remain over time.
  • exterior walls: Exterior walls are generally comprised of a number of materials combined into a wall assembly. When properly designed and constructed, the assembly is the first line of defense between water and the interior of your building. It is essential that they be maintained properly (including regular refinishing and/or resealing with the correct materials).
  • storage areas: Storage areas should be kept clean.  Allow air to circulate to prevent potential moisture accumulation.
Act Quickly if  Water Intrusion Occurs
Label shut-off valves so that the water supply can be easily closed in the event of a plumbing leak. If water intrusion does occur, you can minimize the damage by addressing the problem quickly and thoroughly. Immediately remove standing water and all moist materials, and consult with a building professional. Should your building become damaged by a catastrophic event, such as fire, flood or storm, take appropriate action to prevent further water damage, once it is safe to do so. This may include boarding up damaged windows, covering a damaged roof with plastic sheeting, and/or removing wet materials and supplies. Fast action on your part will help minimize the time and expense for repairs, resulting in a faster recovery.

For water intrusion and mold inspections, call Veteran Home Inspections at 210-202-1974.  You can also book online at www.vhillc.com

Monday, May 29, 2017

Carbon Monoxide Poisoning and Detectors

Carbon monoxide (CO) is a colorless, odorless, poisonous gas that forms from incomplete combustion of fuels, such as natural or liquefied petroleum gas, oil, wood or coal.
 
Facts and Figures
  • 480 U.S. residents died between 2001 and 2003 from non-fire-related carbon-monoxide poisoning.
  • Most CO exposures occur during the winter months, especially in December (including 56 deaths, and 2,157 non-fatal exposures), and in January (including 69 deaths and 2,511 non-fatal exposures). The peak time of day for CO exposure is between 6 and 10 p.m.
  • Many experts believe that CO poisoning statistics understate the problem. Because the symptoms of CO poisoning mimic a range of common health ailments, it is likely that a large number of mild to mid-level exposures are never identified, diagnosed, or accounted for in any way in carbon monoxide statistics.
  • Out of all reported non-fire carbon-monoxide incidents, 89% or almost nine out of 10 of them take place in a home.
Physiology of Carbon Monoxide Poisoning
When CO is inhaled, it displaces the oxygen that would ordinarily bind with hemoglobin, a process the effectively suffocates the body. CO can poison slowly over a period of several hours, even in low concentrations. Sensitive organs, such as the brain, heart and lungs, suffer the most from a lack of oxygen.
High concentrations of carbon monoxide can kill in less than five minutes. At low concentrations, it will require a longer period of time to affect the body. Exceeding the EPA concentration of 9 parts per million (ppm) for more than eight hours may have adverse health affects. The limit of CO exposure for healthy workers, as prescribed by the U.S. Occupational Health and Safety Administration, is 50 ppm.
 
Potential Sources of Carbon Monoxide

Any fuel-burning appliances which are malfunctioning or improperly installed can be a source of CO, such as:
  • furnaces;
  • stoves and ovens;
  • water heaters;Cars should never be left running in a garage
  • dryers; 
  • room and space heaters; 
  • fireplaces and wood stoves;
  • charcoal grills;
  • automobiles;
  • clogged chimneys or flues;
  • space heaters;
  • power tools that run on fuel;
  • gas and charcoal grills;
  • certain types of swimming pool heaters; and 
  • boat engines.
 
 
 
 
PPM
% CO 
in air
Health Effects in Healthy Adults
Source/Comments
0
0%
no effects; this is the normal level in a properly operating heating appliance

35
0.0035%
maximum allowable workplace exposure limit for an eight-hour work shift
The National Institute for Occupational Safety and Health (NIOSH)
50
0.005%
maximum allowable workplace exposure limit for an eight-hour work shift
              OSHA
100
0.01%
slight headache, fatigue, shortness of breath, 
errors in judgment

125
0.0125%

workplace alarm must sound (OSHA)
200
0.02%
headache, fatigue, 
nausea, dizziness

400
0.04%
severe headache, fatigue, nausea, dizziness, confusion; can be life-threatening after three hours of exposure
evacuate area immediately
800
0.08%
convulsions, loss of consciousness;
death within three hours
evacuate area immediately
12,000
1.2%
nearly instant death

 
 
CO Detector Placement

CO detectors can monitor exposure levels, but do not place them:
  • directly above or beside fuel-burning appliances, as appliances may emit a small amount of carbon monoxide upon start-up;
  • within 15 feet of heating and cooking appliances, or in or near very humid areas, such as bathrooms;
  • within 5 feet of kitchen stoves and ovens, or near areas locations where household chemicals and bleach are stored (store such chemicals away from bathrooms and kitchens, whenever possible);
  • in garages, kitchens, furnace rooms, or in any extremely dusty, dirty, humid, or greasy areas;
  • in direct sunlight, or in areas subjected to temperature extremes. These include unconditioned crawlspaces, unfinished attics, un-insulated or poorly insulated ceilings, and porches;
  • in turbulent air near ceiling fans, heat vents, air conditioners, fresh-air returns, or open windows. Blowing air may prevent carbon monoxide from reaching the CO sensors.
Do place CO detectors:
  • within 10 feet of each bedroom door and near all sleeping areas, where it can wake sleepers. The Consumer Product Safety Commission (CPSC) and Underwriters Laboratories (UL) recommend that every home have at least one carbon monoxide detector for each floor of the home, and within hearing range of each sleeping area;
  • on every floor of your home, including the basement (source:  International Association of Fire Chiefs/IAFC);
  • near or over any attached garage. Carbon monoxide detectors are affected by excessive humidity and by close proximity to gas stoves (source:  City of New York);
  • near, but not directly above, combustion appliances, such as furnaces, water heaters, and fireplaces, and in the garage (source:  UL); and
  • on the ceiling in the same room as permanently installed fuel-burning appliances, and centrally located on every habitable level, and in every HVAC zone of the building (source:  National Fire Protection Association 720). This rule applies to commercial buildings.
In North America, some national, state and local municipalities require installation of CO detectors in new and existing homes, as well as commercial businesses, among them:  Illinois, Massachusetts, Minnesota, New Jersey, Vermont and New York City, and the Canadian province of Ontario. Installers are encouraged to check with their local municipality to determine what specific requirements have been enacted in their jurisdiction.
How can I prevent CO poisoning?
  • Purchase and install carbon monoxide detectors with labels showing that they meet the requirements of the new UL standard 2034 or Comprehensive Safety Analysis 6.19 safety standards.
  • Make sure appliances are installed and operated according to the manufacturer's instructions and local building codes. Have the heating system professionally inspected by an InterNACHI inspector and serviced annually to ensure proper operation. The inspector should also check chimneys and flues for blockages, corrosion, partial and complete disconnections, and loose connections.
  • Never service fuel-burning appliances without the proper knowledge, skill and tools. Always refer to the owner's manual when performing minor adjustments and when servicing fuel-burning equipment.
  • Never operate a portable generator or any other gasoline engine-powered tool either in or near an enclosed space, such as a garage, house or other building. Even with open doors and windows, these spaces can trap CO and allow it to quickly build to lethal levels.
  • Never use portable fuel-burning camping equipment inside a home, garage, vehicle or tent unless it is specifically designed for use in an enclosed space and provides instructions for safe use in an enclosed area.
  • Never burn charcoal inside a home, garage, vehicle or tent.
  • Never leave a car running in an attached garage, even with the garage door open.
  • Never use gas appliances, such as ranges, ovens or clothes dryers to heat your home.
  • Never operate un-vented fuel-burning appliances in any room where people are sleeping.
  • During home renovations, ensure that appliance vents and chimneys are not blocked by tarps or debris. Make sure appliances are in proper working order when renovations are complete.
  • Do not place generators in the garage or close to the home. People lose power in their homes and get so excited about using their gas-powered generator that they don't pay attention to where it is placed. The owner's manual should explain how far the generator should be from the home.
  • Clean the chimney. Open the hatch at the bottom of the chimney to remove the ashes.  Hire a chimney sweep annually.
  • Check vents. Regularly inspect your home's external vents to ensure they are not obscured by debris, dirt or snow.
 

In summary, carbon monoxide is a dangerous poison that can be created by various household appliances. CO detectors must be placed strategically throughout the home or business in order to alert occupants of high levels of the gas.

To schedule your home inspection in San Antonio, TX, call 210-202-1974 or book online at www.vhillc.com

Sunday, May 28, 2017

Barbecue Safety

With tomorrow kicking off the summer, most of us will break out the BBQ sometime soon.  When you do, make sure you keep safety in mind.  And for tomorrow, take a moment to give thanks to the military men and women that gave their lives to allow us to live ours in freedom.
 
 
With barbecue season already here, homeowners should heed the following safety precautions in order to keep their families and property safe:

  • Propane grills present an enormous fire hazard, as the Consumer Product Safety Commission (CPSC) is aware of more than 500 fires that result annually from their misuse or malfunction. The following precautions are recommended specifically when using propane grills:
    • Store propane tanks outdoors and never near the grill or any other heat source. In addition, never store or transport them in your car’s trunk.
    • Make sure to completely turn off the gas after you have finished, or when you are changing the tank. Even a small gas leak can cause a deadly explosion. 
    • Check for damage to a tank before refilling it, and only buy propane from reputable suppliers.
    • Never use a propane barbecue grill on a terrace, balcony or roof, as this is dangerous and illegal.
    • No more than two 20-pound propane tanks are allowed on the property of a one- or two-family home.
    • To inspect for a leak, spray a soapy solution over the connections and watch for bubbles. If you see evidence of a leak, reconnect the components and try again. If bubbles persist, replace the leaking parts before using the grill.
    • Make sure connections are secure before turning on the gas, especially if the grill hasn’t been used in months. The most dangerous time to use a propane grill is at the beginning of the barbecue season.
    • Ignite a propane grill with the lid open, not closed. Propane can accumulate beneath a closed lid and explode.
    • When finished, turn off the gas first, and then the controls. This way, residual gas in the pipe will be used up.
  • Charcoal grills pose a serious poisoning threat due to the venting of carbon monoxide (CO). The CPSC estimates that 20 people die annually from accidentally ingesting CO from charcoal grills.  These grills can also be a potential fire hazard. Follow these precautions when using charcoal grills:
    • Never use a charcoal grill indoors, even if the area is ventilated. CO is colorless and odorless, and you will not know you are in danger until it is too late.
    • Use only barbecue starter fluid to start the grill, and don’t add the fluid to an open flame. It is possible for the flame to follow the fluid’s path back to the container as you're holding it.
    • Let the fluid soak into the coals for a minute before igniting them to allow explosive vapors to dissipate.
    • Charcoal grills are permitted on terraces and balconies only if there is at least 10 feet of clearance from the building, and a water source immediately nearby, such as a hose (or 4 gallons of water).
    • Be careful not to spill any fluid on yourself, and stand back when igniting the grill. Keep the charcoal lighter fluid container at a safe distance from the grill.
    • When cleaning the grill, dispose of the ashes in a metal container with a tight lid, and add water. Do not remove the ashes until they have fully cooled.
    • Fill the base of the grill with charcoal to a depth of no more than 2 inches.
  • Electric grills are probably safer than propane and charcoal grills, but safety precautions need to be used with them as well. Follow these tips when using electric grills:
    • Do not use lighter fluid or any other combustible materials. 
    • When using an extension cord, make sure it is rated for the amperage required by the grill. The cord should be unplugged when not in use, and out of a busy foot path to prevent tripping.
    • As always, follow the manufacturer's instructions.
Safety Recommendations for General Grill Use
  • Always make sure that the grill is used in a safe place, where kids and pets won't touch or bump into it. Keep in mind that the grill will still be hot after you finish cooking, and anyone coming into contact with it could be burned.
  • If you use a grill lighter, make sure you don't leave it lying around where children can reach it. They will quickly learn how to use it.
  • Never leave the grill unattended, as this is generally when accidents happen.
  • Keep a fire extinguisher or garden hose nearby.
  • Ensure that the grill is completely cooled before moving it or placing it back in storage.
  • Ensure that the grill is only used on a flat surface that cannot burn, and well away from any shed, trees or shrubs.
  • Clean out the grease and other debris in the grill periodically. Be sure to look for rust or other signs of deterioration.
  • Don't wear loose clothing that might catch fire while you're cooking.
  • Use long-handled barbecue tools and flame-resistant oven mitts.
  • Keep alcoholic beverages away from the grill; they are flammable!
In summary, homeowners should exercise caution when using any kind of grill, as they can harm life and property in numerous ways. 

Remember, you can schedule your home inspection by calling 210-202-1974 or book online at www.vhillc.com

Adapted with permission from https://www.nachi.org/barbeque-safety.htm by Nick Gromicko

Saturday, May 27, 2017

Attached Garage Fire Containment

To continue the information on garage fire safety, if the worst should happen, how can the fire be contained to the garage?
 
 

An attached garage is a garage that is physically attached to a house. Fires that begin in attached garages are more likely to spread to living areas than fires that originate in detached garages. For this reason, combined with the multitude of flammable materials commonly found in garages, attached garages should be adequately sealed from living areas. A properly sealed attached garage will ideally restrict the potential spread of fire long enough to allow the occupants time to escape the home or building.

Why are garages (both attached and detached) fire hazards?
  • Oil or gasoline can drip from cars. These fluids may collect unnoticed and eventually ignite.
  • Flammable liquids, such as gasoline, oil and paint, are commonly stored in garages. Some other examples are brake fluid, degreaser, motor oil, varnish, lighter fluid, and fluids containing solvents, such as paint thinner. These chemicals are flammable in their fluid form, and some may create explosive vapors.
  • Heaters and boilers, which are frequently installed in garages, create sparks that can ignite fumes or fluids. Car batteries, too, will spark under certain conditions.
  • Mechanical or electrical building projects are often undertaken in the garage. Fires can easily start while a careless occupant is welding near flammable materials. 
Doors
The 2006 edition of the International Residential Code (IRC) states the following concerning doors that separate garages from living areas:
R309.1 Opening Penetration
Openings from a private garage directly into a room used for sleeping purposes shall not be permitted. Other openings between the garage and the residence shall be equipped with solid wood doors not less than 1-3/8” (35 mm) in thickness, solid- or honeycomb-core steel doors not less than 1-3/8” (35 mm) thick, or 20-minute fire-rated doors.
In addition, Veteran Home Inspections can check for the following while inspecting doors that separate garages from living areas:
  • While not required by the IRC, it is helpful if there is at least one step leading up to the door from the garage. Gasoline fumes and other explosive gases are heavier than air, and they will accumulate at ground level. Their entry beneath a door will be slowed by an elevation increase.
  • Doors should have tight seals around their joints to prevent seepage of fumes into the living areas of the house. Carbon monoxide, with the same approximate density as air (and often warmer than surrounding air), will easily rise above the base of an elevated door and leak through unsealed joints.
  • Doors should be self-closing. Many homeowners find these doors inconvenient, but they are safer than doors that can be left ajar. While this requirement is no longer listed in the IRC, it is still a valuable recommendation.
  • If doors have windows, the glass should be fire-rated.
  • Pet doors should not be installed in fire-rated doors. Pet doors will violate the integrity of a fire barrier. 
Walls and Ceilings
The 2006 edition of the IRC states the following concerning garage walls and ceilings:
          R309.2 Separation Required
The garage shall be separated from the residence and its attic area by not less than 1/2-inch (12.7 mm) gypsum board applied to the garage side. Garages beneath habitable rooms shall be separated from all habitable rooms above by not less than 5/8-inch (15.9 mm) Type X gypsum board or equivalent. Where the separation is a floor-ceiling assembly, the structure supporting the separation shall also be protected by not less than 1/2-inch (12.7 mm) gypsum board or equivalent. Garages located less than 3 feet (914 mm) from a dwelling unit on the same lot shall be protected with not less than 1/2–inch (12.7 mm) gypsum board applied to the interior side of exterior walls that are within this area. Openings in these walls shall be regulated by Section 309.1. This provision does not apply to garage walls that are perpendicular to the adjacent dwelling unit wall.
In addition, inspectors can check for the following while inspecting walls and ceilings:
  • In garages that have access to the attic, a hatch cover made from an approved, fire-rated material should protect this access at all times. Missing or opened covers should be called out, as should covers made from flammable materials, such as thin plywood. Garage attic door must be constructed such that the 45-minute rating is maintained; any drywall edges on both the hatch and the surrounding area exposed to physical damage should be protected. The cover or door should be installed so that it is permanent (non-removable), with latching hardware to maintain it in a closed position. This could be accomplished by the use of spring-loaded hinges, a door closer, or hardware that will not allow it to be left in an open position when not in use. A single bolt-type or hook-and-eye hardware does not provide a positive closure, since these would allow the door to be left open. Likewise, drywall screws are fasteners--not hardware--so they cannot be used as the only means of keeping access doors closed.
  • The living space should be separated from the garage by a firewall that extends from the floor to the roof. If the ceiling material is fire-rated, the firewall can terminate at the ceiling.
  • Drywall joints shall be taped or sealed. Joints shall be fitted so that the gap is no more than 1/20-inch, with joints backed by either solid wood or another layer of drywall such that the joints are staggered. 
Ducts

The 2006 edition of the IRC states the following concerning ducts that penetrate garage walls and ceilings:
R309.1.1 Duct Penetration

Ducts in the garage and ducts penetrating the walls or ceilings separating the dwelling from the garage shall be constructed of a minimum No. 26-gauge (0.48 mm) steel sheet or other approved material, and shall have no openings in the garage.
Dryer exhaust ducts that penetrate garage walls are serious fire hazards. These ducts are generally made from plastic and will easily melt during a fire, creating a large breach in the firewall.

Floors

The 2006 edition of the IRC states the following concerning floors in garages:
          R309.3 Floor Surface
Garage floor surfaces shall be of approved, non-combustible material. The area of the floor used for parking of automobiles or other vehicles shall be sloped to facilitate the movement of liquids to a drain or toward the main vehicle entry doorway.
Inspectors should also check for the following:
  • A curb should be present along the perimeter of the garage floor. This curb should be designed to prevent fluids from entering the living areas of the house. Curbs are often useful barriers for melted snow carried into the garage by automobiles, but curbs can also keep chemical spills contained in the garage.
  • Water heaters should be elevated above the floor by at least 18 inches. A pilot light may ignite spilled fluid or floor-level flammable fumes if the water heater is placed at floor level.
Concerning items placed on the floor, inspectors should check for the following:
  • All flammable liquids should be stored in clearly labeled, self-closing containers, and in small amounts. They should be stored away from heaters, appliances, pilot lights, and other sources of heat and flame.
  • Propane tanks should never be stored indoors. If they catch fire, a serious explosion may result. Propane tanks are sturdy enough to be stored outdoors.
  • The floor should be clear of clutter. Loose papers, matches, oily rags, and other flammable items are dangerous if they are strewn about the garage floor.
General safety tips that inspectors can pass onto their clients:
  • Use light bulbs with the proper wattage.
  • Do not overload electrical outlets.
  • Tape down all cords and wires so that they are not twisted or accidentally yanked.
In summary, attached garages should be sealed off from the living space so that fire may be contained.

To schedule your home inspection, call Veteran Home Inspections at 210-202-1974 or schedule online at www.vhillc.com

Adapted with permission from https://www.nachi.org/attached-garage-fire-hazards.htm by Nick Gromicko and Kenton Shepard

Friday, May 26, 2017

Attached Garage Fire Hazards

The purpose of this article is twofold. First, at Veteran Home Inspections, we’d like you to take measures to keep your garage free from fire. Fortunately, there are ways this can be done, some of which are described below. Secondly, garage fires do happen, and we’d like you to make sure that a fire cannot not easily spread to the rest of your house. While you can perform many of the recommendations in this article yourself, it is a good idea to hire Veteran Home Inspections to make sure your home is safe from a garage fire.
Why do many garages pose a fire hazard?
  • Where are you most likely to do any welding, or any work on your car? These activities require working with all sorts of flammable materials.
  • Water heaters and boilers are usually stored in garages, and they can create sparks that may ignite fumes or fluids. Car batteries, too, will spark under certain conditions.
  • Oil and gasoline can drip from cars. These fluids may collect unnoticed and eventually ignite, given the proper conditions.
  • Flammable liquids, such as gasoline, motor oil and paint are commonly stored in garages. Some other examples are brake fluid, varnish, paint thinner and lighter fluid.
The following tips can help prevent garage fires and their spread:
  • If the garage allows access to the attic, make sure a hatch covers this access.
  • The walls and ceiling should be fire-rated. Unfortunately, it will be difficult for untrained homeowners to tell if their walls are Type X fire-rated gypsum. Our Certified Master Inspector can examine the walls and ceiling to make sure they are adequate fire barriers. 
  • The floor should be clear of clutter. Loose papers, matches, oily rags, and other potentially  flammable items are extremely dangerous if they are strewn about the garage floor.
  • Use light bulbs with the proper wattage, and do not overload electrical outlets.
  • Tape down all cords and wires so they are not twisted or accidentally yanked.
If there is a door that connects the garage to the living area, consider the following:
  • Do not install a pet door in the door! Flames can more easily spread into the living area through a pet door, especially if it’s made of plastic.
  • Does the door have a window? We can inspect the window to tell if it's fire-rated.
  • The door should be self-closing. While it may be inconvenient, especially while carrying groceries into the house from the car, doors should be self-closing. You never know when a fire will happen, and it would be unfortunate to accidentally leave the door open while a fire is starting in the garage.
  • Check the joints and open spaces around the door. Are they tightly sealed? Any openings at all can allow dangerous fumes, such as carbon monoxide or gasoline vapor, to enter the living area. We inspector can recommend ways to seal the door so that fumes cannot enter the living area.
Concerning items placed on the floor, you should check for the following:
  • Store your flammable liquids in clearly labeled, self-closing containers, and only in small amounts. Keep them away from heaters, appliances, pilot lights and other sources of heat or flame.
  • Never store propane tanks indoors. If they catch fire, they can explode. Propane tanks are sturdy enough to be stored outdoors.
  • Never bring charcoal grills (or ashes) inside the home or garage.  Even though you may think the coals are out, they can continue to smolder for days.  One of my neighbors almost lost his home when he threw coals in his garbage can 3 days after he grilled out.  The next morning the garbage can ignited and burned the side of his house.  Only an observant neighbor and a quick response from the San Antonio Fire Department saved his home.
In summary, there are plenty of things that you can do to prevent garage fires from spreading to the rest of the house, or to keep them from starting in the first place. However, it is highly recommended that you have your garage periodically examined by an inspector.

To schedule your home inspection, call Veteran Home Inspections at 210-202-1974 or schedule online at www.vhillc.com

Adapted with permission from https://www.nachi.org/garage-fires-client.htm by Nick Gromicko and Kenton Shepard